Predictive model measuring nitrous oxide emissions in streams, rivers

When it comes to greenhouse gasesGreenhouse gas emissions cause dangerous anthropogenic climate change. Emissions include CO2, fluoridated gases, methane which are emitted by human activity such as deforestation and burning fossil fuels, and water vapour., carbon dioxideCarbon dioxide (CO2) is emitted in several ways. Naturally through the carbon cycle and through human activities like the burning of fossil fuels. These human activities have increased CO2 concentrations in the atmosphere since the beginning of the industrial revolution and these high ... tends to steal the spotlight — but new research in the journal Proceedings of the National Academy of Sciences (PNAS) reveals how scientists have developed a new, predictive tool to estimate nitrous oxideOne of the six types of greenhouse gases to be curbed under the Kyoto Protocol. The main anthropogenic source of nitrous oxide is agriculture (soil and animal manure management), but important contributions also come from sewage treatment, combustion of fossil fuel, and chemical industrial ... (N2O) emissionsEmissions of greenhouse gases, greenhouse gas precursors, and aerosols associated with human activities, including the burning of fossil fuels, deforestation, land-use changes, livestock, fertilisation, etc. (IPCC) from rivers and streams around the world. N2O, a greenhouse gasGreenhouse gas emissions cause dangerous anthropogenic climate change. Emissions include CO2, fluoridated gases, methane which are emitted by human activity such as deforestation and burning fossil fuels, and water vapour. with 300 times the warming potential of carbon dioxide, persists for over a century in the Earth’s atmosphere and is known to cause significant damage to the Earth’s ozone layer. Rivers and streams can be sources of N2O because they are hotspots for denitrification, a process whereby microbes convert dissolved nitrogen into nitrogenous gas.

While previous research has attempted to quantify where and when N2O is emitted, rivers and streams have posed a significant challenge because accurately measuring N2O from flowing waters is difficult, particularly at the scale of an entire river system. The current study presents a widely applicable predictive model from which to estimate N2O emissions from waterways based on simple metrics including stream size, land useLand use refers to the total of arrangements, activities, and inputs undertaken in a certain land cover type (a set of human actions). The term land use is also used in the sense of the social and economic purposes for which land is managed (e.g., grazing, timber extraction, and conservation). ... and land cover of adjacent landscape, biomeA system of living organisms interacting with each other and their physical environment. The boundaries of what could be called an ecosystem are somewhat arbitrary, depending on the focus of interest or study. Thus, the extent of an ecosystem may range from very small spatial scales to, ... type and varying climatic conditions.

“Rapid land use change, such as the conversion of historic wetlands to agricultural lands, has increased the delivery of bioavailable nitrogen from the landscape to the detriment of receiving streams and rivers,” said Jennifer Tank, Galla Professor in the Department of Biological Sciences at the University of Notre Dame, co-author of the study and director of Notre Dame’s Environmental Change Initiative. “Some of that nitrogen will be converted by microbes into N2O, and because it is a powerful greenhouse gas, where and when that happens in flowing waters is of great interest, both now and into the future.”

Working with an international team of scientists, Tank and her graduate student Martha Dee analyzed previously published emissions dataEmissions data is defined within the inventory system being adopted - for PAS - PAS 2050 has an additional requirement for organisations that own 10%. GHG Protocol encourages primary data collection from suppliers. from streams and rivers around the world including Michigan’s Kalamazoo River, New York’s Hudson River, the Swale-Ouse River in the United Kingdom and six large rivers across Africa. In addition, the team collected its own measurements of N2O from two river networks regionally, including the Manistee River in Michigan and the Tippecanoe River in Indiana. The researchers’ analysis of the combined dataset found that N2O emissions are dependent on river size — as it increases, the production of N2O shifts from the streambed to the overlying waterClimate change is expected to exacerbate current stresses on water resources from population growth and economic and land-use change, including urbanisation. On a regional scale, mountain snow pack, glaciers and small ice caps play a crucial role in freshwater availability. Widespread mass ....

“The current understanding of nitrous oxide production is limited in stream and river networks in a time of rapid global change,” said Dee co-author of the study. “Our study uses a diverse, global set of data combined with regional measurements to create a model that that can better predict the impact of human activity and environmental drivers on N2O production.”

The new model will be a valuable tool for scientists and water managers alike, as the framework allows for accurate prediction of N2O emissions under a variety of scenarios including water temperature, changes in land use and the influence of climate changeClimate change is a lasting change in weather patterns over long periods of time. It can be a natural phenomena and and has occurred on Earth even before people inhabited it. Quite different is a current situation that is also referred to as climate change, anthropogenic climate change, or ... on emissionEmissions of greenhouse gases, greenhouse gas precursors, and aerosols associated with human activities, including the burning of fossil fuels, deforestation, land-use changes, livestock, fertilisation, etc. (IPCC) outcomes.

Story Source:

Materials provided by University of Notre Dame. Note: Content may be edited for style and length.

Powered by WPeMatico

Leave a Reply

Be the First to Comment!

Notify of
avatar
wpDiscuz
Translate »
Support