Monday, September 27, 2021
HomePollutionLand PollutionThe underappreciated role of agricultural soil nitrogen oxide emissions in ozone pollution...

The underappreciated role of agricultural soil nitrogen oxide emissions in ozone pollution regulation in North China


  • 1.

    Monks, P. S. et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 15, 8889–8973 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Turner, M. C. et al. Long-term ozone exposure and mortality in a large prospective study. Am. J. Respir. Crit. Care Med. 193, 1134–1142 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 3.

    Unger, N., Zheng, Y., Yue, X. & Harper, K. L. Mitigation of ozone damage to the world’s land ecosystems by source sector. Nat. Clim. Change 10, 134–137 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    Chang, K.-L., Petropavlovskikh, I., Copper, O. R., Schultz, M. G. & Wang, T. Regional trend analysis of surface ozone observations from monitoring networks in eastern North America. Eur. East Asia. Elem. Sci. Anth 5, 50 (2017).

    Article 

    Google Scholar
     

  • 5.

    Lu, X. et al. Severe surface ozone pollution in China: a global perspective. Environ. Sci. Technol. Lett. 5, 487–494 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Zheng, B. et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 18, 14095–14111 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 7.

    Zhang, Q. et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl Acad. Sci. USA 116, 24463–24469 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 8.

    Lu, X. et al. Rapid increases in warm-season surface ozone and resulting health impact in China Since 2013. Environ. Sci. Technol. Lett. 7, 240–247 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Fleming, Z. L. et al. Tropospheric Ozone Assessment Report: Present-day ozone distribution and trends relevant to human health. Elem. Sci. Anth 6, 12 (2018).

    Article 

    Google Scholar
     

  • 10.

    Gaudel, A. et al. Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Elem. Sci. Anth 6, 39 (2018).

    Article 

    Google Scholar
     

  • 11.

    Li, K. et al. Anthropogenic drivers of 2013-2017 trends in summer surface ozone in China. Proc. Natl Acad. Sci. USA 116, 422–427 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 12.

    Li, K. et al. A two-pollutant strategy for improving ozone and particulate air quality in China. Nat. Geosci. 12, 906–910 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 13.

    Lu, X. et al. Exploring 2016–2017 surface ozone pollution over China: source contributions and meteorological influences. Atmos. Chem. Phys. 19, 8339–8361 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 14.

    Li, K. et al. Increases in surface ozone pollution in China from 2013 to 2019: anthropogenic and meteorological influences. Atmos. Chem. Phys. 20, 11423–11433 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 15.

    Liu, Y. & Wang, T. Worsening urban ozone pollution in China from 2013 to 2017—Part 1: The complex and varying roles of meteorology. Atmos. Chem. Phys. 20, 6305–6321 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 16.

    Le, T. et al. Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science 369, 702–706 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 17.

    Shi, Z. et al. Abrupt but smaller than expected changes in surface air quality attributable to COVID-19 lockdowns. Sci. Adv. 7(3), eabd6696 (2021).

  • 18.

    Li, K. et al. Ozone pollution in the North China Plain spreading into the late-winter haze season. Proc. Natl Acad. Sci. USA 118, e2015797118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 19.

    Li, M. et al. MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 17, 935–963 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 20.

    Zhang, Y. et al. Emissions of nitrous oxide, nitrogen oxides and ammonia from a maize field in the North China Plain. Atmos. Environ. 45, 2956–2961 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 21.

    Zhang, L. et al. Agricultural ammonia emissions in China: reconciling bottom-up and top-down estimates. Atmos. Chem. Phys. 18, 339–355 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 22.

    Zhao, Y. et al. Atmospheric nitrogen deposition to China: a model analysis on nitrogen budget and critical load exceedance. Atmos. Environ. 153, 32–40 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 23.

    Wang, Y. et al. Seasonal variability of NOx emissions over east China constrained by satellite observations: Implications for combustion and microbial sources. J. Geophys. Res. 112, D06301 (2007).

    ADS 
    Article 

    Google Scholar
     

  • 24.

    Lin, J. T. Satellite constraint for emissions of nitrogen oxides from anthropogenic, lightning and soil sources over East China on a high-resolution grid. Atmos. Chem. Phys. 12, 2881–2898 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 25.

    Three-Year Action Plan on Defending the Blue Sky (in Chinese) (Chinese State Council, 2018); http://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm.

  • 26.

    Jin, X. & Holloway, T. Spatial and temporal variability of ozone sensitivity over China observed from the Ozone Monitoring Instrument. J. Geophys. Res. 120, 7229–7246 (2015).

    Article 

    Google Scholar
     

  • 27.

    Wang, T. et al. Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects. Sci. Total Environ. 575, 1582–1596 (2017).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 28.

    Li, Q. et al. “New” reactive nitrogen chemistry reshapes the relationship of ozone to its precursors. Environ. Sci. Technol. 52, 2810–2818 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 29.

    Lyu, X. et al. Causes of a continuous summertime O3 pollution event in Jinan, a central city in the North China Plain. Atmos. Chem. Phys. 19, 3025–3042 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 30.

    Hudman, R. C., Russell, A. R., Valin, L. C. & Cohen, R. C. Interannual variability in soil nitric oxide emissions over the United States as viewed from space. Atmos. Chem. Phys. 10, 9943–9952 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 31.

    Romer, P. S. et al. Effects of temperature-dependent NOx emissions on continental ozone production. Atmos. Chem. Phys. 18, 2601–2614 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 32.

    Oikawa, P. Y. et al. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region. Nat. Commun. 6, 8753 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 33.

    Almaraz, M. et al. Agriculture is a major source of NOx pollution in California. Sci. Adv. 4, eaao3477 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 34.

    Li, G. et al. Widespread and persistent ozone pollution in eastern China during the non-winter season of 2015: observations and source attributions. Atmos. Chem. Phys. 17, 2759–2774 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 35.

    Gao, M. et al. Ozone pollution over China and India: seasonality and sources. Atmos. Chem. Phys. 20, 4399–4414 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 36.

    Shah, V. et al. Effect of changing NOx lifetime on the seasonality and long-term trends of satellite-observed tropospheric NO2 columns over China. Atmos. Chem. Phys. 20, 1483–1495 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 37.

    Hudman, R. C. et al. Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and space based-constraints. Atmos. Chem. Phys. 12, 7779–7795 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 38.

    Vinken, G. C. M., Boersma, K. F., Maasakkers, J. D., Adon, M. & Martin, R. V. Worldwide biogenic soil NOx emissions inferred from OMI NO2 observations. Atmos. Chem. Phys. 14, 10363–10381 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 39.

    Li, D., Wang, X., Sheng, G., Mo, J. & Fu, J. Soil nitric oxide emissions after nitrogen and phosphorus additions in two subtropical humid forests. J. Geophys. Res. 113, D16301 (2008).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 40.

    Zhou, F. et al. A new high-resolution N2O emission inventory for China in 2008. Environ. Sci. Technol. 48, 8538–8547 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 41.

    Tian, H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 42.

    Sillman, S. The use of NOy, H2O2, and HNO3 as indicators for ozone-NOx-hydrocarbon sensitivity in urban locations. J. Geophys. Res. 100, 14175 (1995).

    ADS 
    Article 

    Google Scholar
     

  • 43.

    Zhang, Y. et al. Tropospheric ozone change from 1980 to 2010 dominated by equatorward redistribution of emissions. Nat. Geosci. 9, 875–879 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 44.

    Lefohn, A. S. et al. Tropospheric ozone assessment report: Global ozone metrics for climate change, human health, and crop/ecosystem research. Elem. Sci. Anth 6, 28 (2018).

    Article 

    Google Scholar
     

  • 45.

    Solutions for control of volatile organic compounds (VOCs) in 2020 (in Chinese) (Ministry of Ecology and Environment (MEE), 2020); http://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202006/t20200624_785827.html?from=timeline.

  • 46.

    Su, H. et al. Soil nitrite as a source of atmospheric HONO and OH radicals. Science 333, 1616–1618 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 47.

    Liu, Y. et al. A comprehensive model test of the HONO sources constrained to field measurements at rural North China plain. Environ. Sci. Technol. 53, 3517–3525 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 48.

    Houlton, B. Z. et al. A world of co-benefits: solving the global nitrogen challenge. Earths Future 7, 1–8 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 49.

    Jerrett, M. et al. Long-term ozone exposure and mortality. N. Engl. J. Med. 360, 1085–1095 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 50.

    Levelt, P. F. et al. The ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens. 44, 1093–1101 (2006).

    ADS 
    Article 

    Google Scholar
     

  • 51.

    Qu, Z. et al. Monthly top-down NOx emissions for China (2005-2012): a hybrid inversion method and trend analysis. J. Geophys. Res. 122, 4600–4625 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 52.

    Lin, J. T. et al. Influence of aerosols and surface reflectance on satellite NO2 retrieval: seasonal and spatial characteristics and implications for NOx emission constraints. Atmos. Chem. Phys. 15, 11217–11241 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 53.

    Liu, M. et al. Improved aerosol correction for OMI tropospheric NO2 retrieval over East Asia: constraint from CALIOP aerosol vertical profile. Atmos. Meas. Tech. 12, 1–21 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 54.

    Boersma, K. F. et al. An improved tropospheric NO2; column retrieval algorithm for the Ozone Monitoring Instrument. Atmos. Meas. Tech. 4, 1905–1928 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 55.

    Boersma, K. F. et al. Improving algorithms and uncertainty estimates for satellite NO2 retrievals: results from the quality assurance for the essential climate variables (QA4ECV) project. Atmos. Meas. Tech. 11, 6651–6678 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 56.

    Yan, X., Ohara, T. & Akimoto, H. Statistical modeling of global soil NOx emissions. Glob. Biogeochem. Cycles 19, GB3019 (2005).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 57.

    Potter, P., Ramankutty, N., Bennett, E. M. & Donner, S. D. Characterizing the spatial patterns of global fertilizer application and manure production. Earth Interact. 14, 1–22 (2010).

    Article 

    Google Scholar
     

  • 58.

    Weng, H. et al. Global high-resolution emissions of soil NOx, sea salt aerosols, and biogenic volatile organic compounds. Sci. Data 7, 148 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 59.

    Huang, Y. & Li, D. Soil nitric oxide emissions from terrestrial ecosystems in China: a synthesis of modeling and measurements. Sci. Rep. 4, 7406 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 60.

    Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M. & Chin, M. Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: implications for policy. J. Geophys Res. Atmos. 109, D15204 (2004).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 61.

    Mao, J. et al. Ozone and organic nitrates over the eastern United States: sensitivity to isoprene chemistry. J. Geophys. Res. 118, 11,256–11,268 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 62.

    Murray, L. T., Jacob, D. J., Logan, J. A., Hudman, R. C. & Koshak, W. J. Optimized regional and interannual variability of lightning in a global chemical transport model constrained by LIS/OTD satellite data. J. Geophys. Res. 117, D20307 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 63.

    Guenther, A. B. et al. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 5, 1471–1492 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 64.

    van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 65.

    Grell, G. A. et al. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 39, 6957–6975 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 66.

    Lu, X., Ye, X. P. & Zhang, L. Dataset for The underappreciated role of agricultural soil nitrogen oxides emissions in ozone pollution regulation in North China. Zenedo https://doi.org/10.5281/zenodo.4740433 (2021).



  • Source link

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -

    Most Popular

    Recent Comments