Monday, September 27, 2021
HomePollutionLand PollutionEvaluating the influence of land use and land cover change on fine...

Evaluating the influence of land use and land cover change on fine particulate matter


  • 1.

    Ru-Jin, H. et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514, 218–222 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 2.

    Bilal, M., Nichol, J. E. & Spak, S. N. A new approach for estimation of fine particulate concentrations using satellite aerosol optical depth and binning of meteorological variables. Aerosol Air Quality Res. 17, 356–367. https://doi.org/10.4209/aaqr.2016.03.0097 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Götschi, T., Heinrich, J., Sunyer, J. & Künzli, N. J. E. Long-term effects of ambient air pollution on lung function: A review. Epidemiology 19, 690–701 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 4.

    Jiang, Z., Kazuhiko, I., Ramona, L., Morton, L. & George, T. J. E. H. P. Time-series analysis of mortality effects of fine particulate matter components in Detroit and Seattle. Environ. Health Perspect. 119, 461–466 (2011).

    Article 
    CAS 

    Google Scholar
     

  • 5.

    Weichenthal, et al. PM2.5, oxidant defence and cardiorespiratory health: a review. Environ. Health 12, 40–40 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 6.

    Cakmak, S. et al. Metal composition of fine particulate air pollution and acute changes in cardiorespiratory physiology. Environ. Pollut. 189, 208–214 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 7.

    Zhu, Y. et al. Indoor/outdoor relationships and diurnal/nocturnal variations in water-soluble ion and PAH concentrations in the atmospheric PM 2.5 of a business office area in Jinan, a heavily polluted city in China. Atmos. Res. 153, 276–285 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Zhao, C. X., Wang, Y. Q., Wang, Y. J., Zhang, H. L. & Zhao, B. Q. J. E. S. Temporal and spatial distribution of PM_(2.5) and PM_(10) pollution status and the correlation of particulate matters and meteorological factors during Winter and Spring in Beijing. Environ. Sci. 35, 418–427 (2014).


    Google Scholar
     

  • 9.

    Guo, J. et al. Impact of diurnal variability and meteorological factors on the PM2.5—AOD relationship: Implications for PM2.5 remote sensing. Environ. Pollut. 221, 94 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 10.

    Hajiloo, F., Hamzeh, S. & Gheysari, M. Impact assessment of meteorological and environmental parameters on PM 2.5 concentrations using remote sensing data and GWR analysis (case study of Tehran). Environ. Sci. Pollut. Res. 26, 24331–24345 (2018).

    Article 
    CAS 

    Google Scholar
     

  • 11.

    Bao, C. et al. Association of PM2.5 pollution with the pattern of human activity: A case study of a developed city in eastern China. J. Air Waste Manag. Assoc. 66, 1202–1213 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 12.

    Chan, C. K. & Yao, X. Air pollution in mega cities in China. Atmos. Environ. 42, 1–42 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 13.

    Kinney, P. L. et al. Traffic impacts on PM2.5 air quality in Nairobi, Kenya. Environ. Sci. Policy 14, 369–378 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 14.

    Jing, M., Liu, J., Yuan, X. & Shu, T. Tracing primary PM2.5 emissions via Chinese supply chains. Environ. Res. Lett. 10, 054005 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 15.

    Tao, C., He, J., Lu, X., She, J. & Guan, Z. Spatial and temporal variations of PM2.5 and its relation to meteorological factors in the urban area of Nanjing, China. Int. J. Environ. Res. Public Health 13, 921 (2016).

    Article 
    CAS 

    Google Scholar
     

  • 16.

    Wang, Y., Qi, Y., Hu, J. & Zhang, H. Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013–2014. Environ. Int. 73, 413–422 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 17.

    Zhang, H., Wang, Z. & Zhang, W. Exploring spatiotemporal patterns of PM 2.5 in China based on ground-level observations for 190 cities. Environ. Pollut. 216, 559–567 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 18.

    Li, X. et al. The application of semicircular-buffer-based land use regression models incorporating wind direction in predicting quarterly NO2 and PM 10 concentrations. Atmos. Environ. 103, 18–24 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 19.

    Li, L. et al. Spatial and temporal analysis of Air Pollution Index and its timescale-dependent relationship with meteorological factors in Guangzhou, China, 2001–2011. Environ. Pollut. 190, 75–81 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 20.

    Mazeikis, A. Urbanization influence on meteorological parameters of air pollution: Vilnius case study. Baltica Int. J. Geosci. 26, 51–57 (2013).


    Google Scholar
     

  • 21.

    Zhang, Y. L. & Cao, F. Fine particulate matter (PM 2.5) in China at a city level. Sci. Rep. 5, 14884 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 22.

    Wang, X., Wang, K. & Su, L. Contribution of atmospheric diffusion conditions to the recent improvement in air quality in China. Sci. Rep. 6, 36404 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 23.

    Bandeira, J. M., Coelho, M. C., Maria Elisa, S., Richard, T. & Carlos, B. Impact of land use on urban mobility patterns, emissions and air quality in a Portuguese medium-sized city. Sci. Total Environ. 409, 1154–1163 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 24.

    De, H. C. A regression-based method for mapping traffic-related air pollution: Application and testing in four contrasting urban environments. Sci. Total Environ. 253, 151–167 (2000).

    ADS 
    Article 

    Google Scholar
     

  • 25.

    Liu, C., Henderson, B. H., Wang, D., Yang, X. & Peng, Z. R. A land use regression application into assessing spatial variation of intra-urban fine particulate matter (PM 2.5) and nitrogen dioxide (NO2) concentrations in City of Shanghai, China. Sci. Total Environ. 565, 607–615 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 26.

    Yang, W. & Jiang, X. Interannual characteristics of fine particulate matter in North China and its relationship with land use and land cover change. Environ. Sci. 41, 2995–3003 (2020).


    Google Scholar
     

  • 27.

    Petit, C. C. & Lambin, E. F. Impact of data integration technique on historical land-use/land-cover change: Comparing historical maps with remote sensing data in the Belgian Ardennes. Landsc. Ecol. 17, 117–132 (2002).

    Article 

    Google Scholar
     

  • 28.

    Zadbagher, E., Becek, K. & Berberoglu, S. Modeling land use/land cover change using remote sensing and geographic information systems: Case study of the Seyhan Basin, Turkey. Environ. Monitor. Assess. 190, 494 (2018).

    Article 

    Google Scholar
     

  • 29.

    Sun, S. et al. Regulation of pollutant change and correlation analysis with vegetation index in Beijing–Tianjin–Hebei. Environ. Sci. https://doi.org/10.13227/j.hjkx.201809178 (2019).

  • 30.

    Smith, R. L., Kolenikov, S. & Cox, L. H. Spatiotemporal modeling of PM2.5 data with missing values. J. Geophys. Res. Atmos. 108, D24 (2003).


    Google Scholar
     

  • 31.

    Chemel, C. et al. Application of chemical transport model CMAQ to policy decisions regarding PM2.5 in the UK. Atmos. Environ. 82, 410–417 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 32.

    Shi, Y., Lau, K. L. & Ng, E. Developing street-level PM2.5 and PM10 land use regression models in high-density Hong Kong with urban morphological factors. Environ. Sci. Technol. 50, 8178–8187 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 33.

    Xuefei, H. U. et al. Estimating ground-level PM2.5 concentrations in the Southeastern United States using MAIAC AOD retrievals and a two-stage model. Remote Sens. Environ. 140, 220–232 (2014).

    Article 

    Google Scholar
     

  • 34.

    Van, D. A. et al. Global estimates of fine particulate matter using a combined geophysical–statistical method with information from satellites, models, and monitors. Enviro. Sci. Technol. 50, 3762 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 35.

    van Donkelaar, A., Martin, R. V., Li, C. & Burnett, R. T. Regional estimates of chemical composition of fine particulate matter using a combined geoscience-statistical method with information from satellites, models, and monitors. Environ. Sci. Technol. 53, 2595–2611 (2019).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 36.

    Yang, H., Chen, W., Liang, Z. J. I. J. O. E. R. & Health, P. Impact of land use on PM25 pollution in a representative city of middle China. Int. J. Environ. Res. Public Health 14, 462 (2017).

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 37.

    Sun, L. et al. Impact of Land-Use and Land-Cover Change on urban air quality in representative cities of China. J. Atmos. Solar-Terrest. Phys. 142, 43–54 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 38.

    Yang, D. et al. Global distribution and evolvement of urbanization and PM2.5 (1998–2015). Atmos. Environ. 182, 171–178 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 39.

    Zheng, S. et al. The spatiotemporal distribution of air pollutants and their relationship with land-use patterns in Hangzhou city, China. Atmosphere 8, 110 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 40.

    Wu, J., Xie, W., Li, W. & Li, J. Effects of urban landscape pattern on PM2.5 pollution—a Beijing case study. PloS one 10, e0142449 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 41.

    Hammer, M. S., Donkelaar, A. V., Li, C., Lyapustin, A. & Martin, R. V. Global estimates and long-term trends of fine particulate matter concentrations (1998–2018). Environ. Sci. Technol. 54, 7879–7890 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 42.

    Propastin, P. Modifying geographically weighted regression for estimating aboveground biomass in tropical rainforests by multispectral remote sensing data. Int. J. Appl. Earth Observ. Geoinform. 18, 82–90 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 43.

    Jiang, M., Sun, W., Yang, G. & Zhang, D. Modelling seasonal GWR of daily PM2.5 with proper auxiliary variables for the Yangtze River Delta. Remote Sens. 9, 346 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 44.

    Xiya, Z. & Haibo, H. Spatio-temporal characteristics of aerosol optical depth and their relationship with urbanization over Beijing–Tianjin–Hebei Region. Chin. J. Atmos. Sci. 41, 797–810 (2017).


    Google Scholar
     

  • 45.

    Yang, W. & Jiang, X. Evaluating sustainable urbanization of resource-based cities based on the Mckinsey matrix: Case study in China. J. Urban Plan. Dev. 144, 05017020 (2018).

    Article 

    Google Scholar
     

  • 46.

    Li, X. et al. A new global land-use and land-cover change product at a 1-km resolution for 2010 to 2100 based on human–environment interactions. Ann. Am. Assoc. Geogr. 107, 1–20 (2017).

    CAS 

    Google Scholar
     

  • 47.

    Li, J. & Huang, X. Impact of land-cover layout on particulate matter 2.5 in urban areas of China. Int. J. Digit. Earth 13, 474–486 (2018).

    Article 

    Google Scholar
     

  • 48.

    Bismarck-Osten, C. V. et al. Characterization of parameters influencing the spatio-temporal variability of urban particle number size distributions in four European cities. Atmos. Environ. 77, 415–429 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 49.

    Zhang, L., Liu, Y. & Hao, L. J. E. R. L. Contributions of open crop straw burning emissions to PM2.5 concentrations in China. Environ. Res. Lett. 11, 014014 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 50.

    Pozzer, A. et al. Impact of agricultural emission reductions on fine-particulate matter and public health. Atmos. Chem. Phys. 17, 1–19 (2017).

    Article 
    CAS 

    Google Scholar
     

  • 51.

    Han, L. et al. Meteorological and urban landscape factors on severe air pollution in Beijing. J. Air Waste Manag. Assoc. 65, 782–787 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 52.

    Fan, M., He, G. & Zhou, M. The winter choke: Coal-fired heating, air pollution, and mortality in China. J. Health Econ. 71, 102316 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 53.

    Xiao, Q., Ma, Z., Li, S. & Liu, Y. The impact of winter heating on air pollution in China. PloS One 10, e0117311 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 54.

    Yanan, L., Zhenming, D., Yuanjie, D., Mengyang, H. & Shunbo, Y. Relationship between urban industrialization and PM2.5 in China: Also discussing the internal mechanism of EKC. Environ. Sci. 41, 1987–1996 (2020).


    Google Scholar
     

  • 55.

    Tong, Z., Whitlow, T. H., Macrae, P. F., Landers, A. J. & Harada, Y. Quantifying the effect of vegetation on near-road air quality using brief campaigns. Environ. Pollut. 201, 141–149 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 56.

    Superczynski, S. D. & Christopher, S. A. Exploring land use and land cover effects on air quality in Central Alabama using GIS and remote sensing. Remote Sens. 3, 2552–2567 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 57.

    Zhang, H. et al. Emission characterization, environmental impact, and control measure of PM2.5 emitted from agricultural crop residue burning in China. J. Clean. Prod. 149, 629–635 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 58.

    Li, J. et al. Chemical characteristics and source apportionment of PM2.5 during the harvest season in eastern China’s agricultural regions. Atmos. Environ. 92, 442–448 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 59.

    Yang, D. et al. Quantifying the influence of natural and socioeconomic factors and their interactive impact on PM2.5 pollution in China. Environ. Pollut. 241, 475–483 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 60.

    Xu, J., Zhou, G., Xu, Z. & De Zhou, S. Urban haze governance: Land use spatial conflict and governance urban air duct. China Land Sci. 29, 49–56 (2015).

    CAS 

    Google Scholar
     

  • 61.

    Lu, D., Mao, W., Xiao, W. & Zhang, L. Non-linear response of PM2.5 pollution to land use change in China. Remote Sens. 13, 1612 (2021).

    ADS 
    Article 

    Google Scholar
     



  • Source link

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -

    Most Popular

    Recent Comments