The COVID-19 pandemic is intricately linked to biodiversity loss and ecosystem health


  • 1.
    • Cheng VC
    • Lau SK
    • Woo PC
    • Yuen KY

    Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection.

    Clin Microbiol Rev. 2007; 20: 660-694

  • 2.
    • Gortazar C
    • Reperant LA
    • Kuiken T
    • et al.

    Crossing the interspecies barrier: opening the door to zoonotic pathogens.

    PLoS Pathog. 2014; 10e1004129

  • 3.

    Pandemic risk.

  • 4.
    • Karesh WB
    • Dobson A
    • Lloyd-Smith JO
    • et al.

    Ecology of zoonoses: natural and unnatural histories.

    Lancet. 2012; 380: 1936-1945

  • 5.
    • UN Environment Programme and International Livestock Research Institute

    Preventing the next pandemic: zoonotic diseases and how to break the chain of transmission.

    UN,
    Nairobi2020

  • 6.
    • Bennett JE
    • Dolin R
    • Blaser MJ

    Mandell, Douglas, and Bennett’s principles and practice of infectious diseases.

    Elsevier Health Sciences,
    Philadelphia2014

  • 7.
    • Jones KE
    • Patel NG
    • Levy MA
    • et al.

    Global trends in emerging infectious diseases.

    Nature. 2008; 451: 990-993

  • 8.
    • Smith KF
    • Goldberg M
    • Rosenthal S
    • et al.

    Global rise in human infectious disease outbreaks.

    J R Soc Interface. 2014; 1120140950

  • 9.
    • Anderson RM
    • Heesterbeek H
    • Klinkenberg D
    • Hollingsworth TD

    How will country-based mitigation measures influence the course of the COVID-19 epidemic?.

    Lancet. 2020; 395: 931-934

  • 10.

    The global macroeconomic impacts of COVID-19: Seven scenarios.

    Asian Economic Papers. 2021; 20: 1-30

  • 11.
    • Nicola M
    • Alsafi Z
    • Sohrabi C
    • et al.

    The socio-economic implications of the coronavirus pandemic (COVID-19): a review.

    Int J Surg. 2020; 78: 185-193

  • 12.
    • Zambrano-Monserrate MA
    • Ruano MA
    • Sanchez-Alcalde L

    Indirect effects of COVID-19 on the environment.

    Sci Total Environ. 2020; 728138813

  • 13.
    • Andersen KG
    • Rambaut A
    • Lipkin WI
    • Holmes EC
    • Garry RF

    The proximal origin of SARS-CoV-2.

    Nat Med. 2020; 26: 450-452

  • 14.

    WHO-convened global study of origins of SARS-CoV-2: China part.

  • 15.
    • Frutos R
    • Serra-Cobo J
    • Chen T
    • Devaux CA

    COVID-19: time to exonerate the pangolin from the transmission of SARS-CoV-2 to humans.

    Infect Genet Evol. 2020; 84104493

  • 16.
    • Boni MF
    • Lemey P
    • Jiang X
    • et al.

    Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic.

    Nat Microbiol. 2020; 5: 1408-1417

  • 17.

    Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding.

    Lancet. 2020; 395: 565-574

  • 18.
    • Zhou P
    • Yang XL
    • Wang XG
    • et al.

    A pneumonia outbreak associated with a new coronavirus of probable bat origin.

    Nature. 2020; 579: 270-273

  • 19.
    • Lam TT-Y
    • Jia N
    • Zhang Y-W
    • et al.

    Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins.

    Nature. 2020; 583: 282-285

  • 20.

    Evolutionary history, potential intermediate animal host, and cross-species analyses of SARS-CoV-2.

    J Med Virol. 2020; 92: 602-611

  • 21.

    Pangolins harbor SARS-CoV-2-related coronaviruses.

    Trends Microbiol. 2020; 28: 515-517

  • 22.

    A genomic perspective on the origin and emergence of SARS-CoV-2.

    Cell. 2020; 181: 223-227

  • 23.
    • Parrish CR
    • Holmes EC
    • Morens DM
    • et al.

    Cross-species virus transmission and the emergence of new epidemic diseases.

    Microbiol Mol Biol Rev. 2008; 72: 457-470

  • 24.
    • Chan JF
    • To KK
    • Tse H
    • Jin DY
    • Yuen KY

    Interspecies transmission and emergence of novel viruses: lessons from bats and birds.

    Trends Microbiol. 2013; 21: 544-555

  • 25.

    Changing patterns of emerging zoonotic diseases in wildlife, domestic animals, and humans linked to biodiversity loss and globalization.

    ILAR J. 2017; 58: 315-318

  • 26.
    • Schmeller DS
    • Courchamp F
    • Killeen G

    Biodiversity loss, emerging pathogens and human health risks.

    Biodivers Conserv. 2020; 29: 3095-3102

  • 27.
    • Ellwanger JH
    • Kulmann-Leal B
    • Kaminski VL
    • et al.

    Beyond diversity loss and climate change: impacts of Amazon deforestation on infectious diseases and public health.

    An Acad Bras Cienc. 2020; 92e20191375

  • 28.
    • Gottdenker NL
    • Streicker DG
    • Faust CL
    • Carroll C

    Anthropogenic land use change and infectious diseases: a review of the evidence.

    EcoHealth. 2014; 11: 619-632

  • 29.
    • Plowright RK
    • Parrish CR
    • McCallum H
    • et al.

    Pathways to zoonotic spillover.

    Nat Rev Microbiol. 2017; 15: 502-510

  • 30.
    • Patz JA
    • Daszak P
    • Tabor GM
    • et al.

    Unhealthy landscapes: policy recommendations on land use change and infectious disease emergence.

    Environ Health Perspect. 2004; 112: 1092-1098

  • 31.
    • McFarlane RA
    • Sleigh AC
    • McMichael AJ

    Land-use change and emerging infectious disease on an island continent.

    Int J Environ Res Public Health. 2013; 10: 2699-2719

  • 32.
    • Johnson CK
    • Hitchens PL
    • Evans TS
    • et al.

    Spillover and pandemic properties of zoonotic viruses with high host plasticity.

    Sci Rep. 2015; 514830

  • 33.

    Extent of nontimber resource extraction in tropical forests: accessibility to game vertebrates by hunters in the Amazon basin.

    Conserv Biol. 2003; 17: 521-535

  • 34.
    • Clements GR
    • Lynam AJ
    • Gaveau D
    • et al.

    Where and how are roads endangering mammals in Southeast Asia’s forests?.

    PLoS One. 2014; 9e115376

  • 35.
    • Faust CL
    • McCallum HI
    • Bloomfield LS
    • et al.

    Pathogen spillover during land conversion.

    Ecol Lett. 2018; 21: 471-483

  • 36.
    • Dobson AP
    • Pimm SL
    • Hannah L
    • et al.

    Ecology and economics for pandemic prevention.

    Science. 2020; 369: 379-381

  • 37.
    • Jones BA
    • Grace D
    • Kock R
    • et al.

    Zoonosis emergence linked to agricultural intensification and environmental change.

    Proc Natl Acad Sci USA. 2013; 110: 8399-8404

  • 38.
    • Bloomfield LS
    • McIntosh TL
    • Lambin EF

    Habitat fragmentation, livelihood behaviors, and contact between people and nonhuman primates in Africa.

    Landsc Ecol. 2020; 35: 985-1000

  • 39.
    • Saenz RA
    • Hethcote HW
    • Gray GC

    Confined animal feeding operations as amplifiers of influenza.

    Vector Borne Zoonotic Dis. 2006; 6: 338-346

  • 40.
    • Epstein JH
    • Field HE
    • Luby S
    • Pulliam JR
    • Daszak P

    Nipah virus: impact, origins, and causes of emergence.

    Curr Infect Dis Rep. 2006; 8: 59-65

  • 41.
    • Lindahl JF
    • Ståhl K
    • Chirico J
    • Boqvist S
    • Thu HTV
    • Magnusson U

    Circulation of Japanese encephalitis virus in pigs and mosquito vectors within Can Tho city, Vietnam.

    PLoS Negl Trop Dis. 2013; 7e2153

  • 42.
    • Travis D
    • Watson R
    • Tauer A

    The spread of pathogens through trade in wildlife.

    Rev Sci Tech. 2011; 30: 219-239

  • 43.

    Smith KF, Schloegel LM, Rosen GE. Wildlife trade and the spread of disease. New directions in conservation medicine: applied cases of ecological health (New York), 2012: 151–63.

  • 44.
    • Volpato G
    • Fontefrancesco MF
    • Gruppuso P
    • Zocchi DM
    • Pieroni A

    Baby pangolins on my plate: possible lessons to learn from the COVID-19 pandemic.

    J Ethnobiol Ethnomed. 2020; 16: 19

  • 45.

    Potential influence of climate change on vector-borne and zoonotic diseases: a review and proposed research plan.

    Environ Health Perspect. 2010; 118: 1507-1514

  • 46.
    • Bartlow AW
    • Manore C
    • Xu C
    • et al.

    Forecasting zoonotic infectious disease response to climate change: mosquito vectors and a changing environment.

    Vet Sci. 2019; 6: 40

  • 47.

    Global climate change and implications for disease emergence.

    Vet Pathol. 2010; 47: 28-33

  • 48.
    • Cutler SJ
    • Fooks AR
    • Van der Poel WH

    Public health threat of new, reemerging, and neglected zoonoses in the industrialized world.

    Emerg Infect Dis. 2010; 16: 1-7

  • 49.

    The impact of climate change and other factors on zoonotic diseases.

    Arch Clin Microbiol. 2011; 2

  • 50.

    Climate change and infectious diseases: What can we expect?.

    Can Commun Dis Rep. 2019; 45: 76-80

  • 51.
    • Morand S
    • Jittapalapong S
    • Suputtamongkol Y
    • Abdullah MT
    • Huan TB

    Infectious diseases and their outbreaks in Asia-Pacific: biodiversity and its regulation loss matter.

    PLoS One. 2014; 9e90032

  • 52.

    Disease ecology and the global emergence of zoonotic pathogens.

    Environ Health Prev Med. 2005; 10: 263-272

  • 53.
    • John Hopkins University & Medicine

    Coronavirus Resource Center.

  • 54.
    • UN World Tourism Organisation

    COVID-19 related travel restrictions.

  • 55.
    • del Rio-Chanona RM
    • Mealy P
    • Pichler A
    • Lafond F
    • Farmer D

    Supply and demand shocks in the COVID-19 pandemic: an industry and occupation perspective.

    Oxf Rev Econ Policy. 2020; ()

  • 56.
    • Hepburn C
    • O’Callaghan B
    • Stern N
    • Stiglitz J
    • Zenghelis D

    Will COVID-19 fiscal recovery packages accelerate or retard progress on climate change?.

    Oxf Rev Econ Policy. 2020; ()

  • 57.
    • Watson JE
    • Dudley N
    • Segan DB
    • Hockings M

    The performance and potential of protected areas.

    Nature. 2014; 515: 67-73

  • 58.
    • Waldron A
    • Miller DC
    • Redding D
    • et al.

    Reductions in global biodiversity loss predicted from conservation spending.

    Nature. 2017; 551: 364-367

  • 59.
    • Bakker VJ
    • Baum JK
    • Brodie JF
    • et al.

    The changing landscape of conservation science funding in the United States.

    Conserv Lett. 2010; 3: 435-444

  • 60.

    Baits, budget cuts: a deadly mix.

    Science. 2012; 338: 192

  • 61.
    • Pergams OR
    • Czech B
    • Haney JC
    • Nyberg D

    Linkage of conservation activity to trends in the US economy.

    Conserv Biol. 2004; 18: 1617-1623

  • 62.

    Environment and conservation organisations coronavirus impact survey report.

  • 63.
    • Hockings M
    • Dudley N
    • Elliott W
    • et al.

    Editorial essay: Covid-19 and protected and conserved areas.

    Parks. 2020; 26

  • 64.
    • Waldron A
    • Mooers AO
    • Miller DC
    • et al.

    Targeting global conservation funding to limit immediate biodiversity declines.

    Proc Natl Acad Sci USA. 2013; 110: 12144-12148

  • 65.
    • World Travel and Tourism Council

    The economic impact of global wildlife tourism.

  • 66.
    • Rondeau D
    • Perry B
    • Grimard F

    The consequences of COVID-19 and other disasters for wildlife and biodiversity.

    Environ Resour Econ. 2020; 76: 945-961

  • 67.

    COVID-19 crisis threatens years of conservation progress in Africa.

  • 68.
    • Corlett RT
    • Primack RB
    • Devictor V
    • et al.

    Impacts of the coronavirus pandemic on biodiversity conservation.

    Biol Conserv. 2020; 246108571

  • 69.
    • Australian Antarctic Program

    Impacts of COVID-19 on the Australian Antarctic program.

  • 70.
    • Australian Antarctic Program

    Changes for Australian Antarctic program to keep the icy continent free of COVID-19.

  • 71.
    • Robinson SA
    • Klekociuk AR
    • King DH
    • Pizarro Rojas M
    • Zúñiga GE
    • Bergstrom DM

    The 2019/2020 summer of Antarctic heatwaves.

    Glob Change Biol. 2020; 26: 3178-3180

  • 72.

    NASA, NOAA analyses reveal 2019 second warmest year on record.

  • 73.
    • National Oceanic and Atmospheric Administration

    US Department of Commerce. 2020. 2019 was 2nd hottest year on record for Earth say NOAA, NASA.

  • 74.
    • Liu Z
    • Ciais P
    • Deng Z
    • et al.

    Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic.

    Nat Commun. 2020; 115172

  • 75.
    • Dutheil F
    • Baker JS
    • Navel V

    COVID-19 as a factor influencing air pollution?.

    Environ Pollut. 2020; 263114466

  • 76.

    COVID curbed carbon emissions in 2020—but not by much.

    Nature. 2021; 589: 343

  • 77.
    • Sayer J
    • Endamana D
    • Ruiz-Perez M
    • et al.

    Global financial crisis impacts forest conservation in Cameroon.

    Int For Rev. 2012; 14: 90-98

  • 78.
    • Garnett ST
    • Burgess ND
    • Fa JE
    • et al.

    A spatial overview of the global importance of Indigenous lands for conservation.

    Nat Sustain. 2018; 1: 369-374

  • 79.

    The role of indigenous peoples in biodiversity conservation. The natural but often forgotten partners.

  • 80.

    Protect Indigenous peoples from COVID-19.

    Science. 2020; 368: 251

  • 81.

    COVID-19, extractive industries, and indigenous communities in Canada: notes towards a political economy research agenda.

    Extr Ind Soc. 2020; 7: 844-846

  • 82.
    • Jack JC
    • Gonet J
    • Mease A
    • Nowak K

    Traditional knowledge underlies One Health.

    Science. 2020; 3691576

  • 83.
    • International Monetary Fund

    Policy Responses to COVID-19.

  • 84.

    Deforestation in the Brazilian Amazon is still rising sharply.

    Science. 2020; 69: 613

  • 85.
    • Silva Junior, CHL
    • Pessôa ACM
    • Carvalho NS
    • Reis JBC
    • Anderson LO
    • Aragão LEOC

    The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade.

    Nat Ecol Evol. 2021; 5: 144-145

  • 86.
    • Vale MM
    • Berenguer E
    • de Menezes MA
    • de Castro EBV
    • de Siqueira LP
    • de Cássia Q
    • Portela R

    The COVID-19 pandemic as an opportunity to weaken environmental protection in Brazil.

    Biol Conserv. 2021; 255108994

  • 87.
    • Spring J
    • Marcello MC
    • Reuters

    Brazil delays vote on land bill amid threat of environmental boycott.

  • 88.
    • Siqueira-Gay J
    • Soares-Filho B
    • Sanchez LE
    • Oviedo A
    • Sonter LJ

    Proposed legislation to mine Brazil’s Indigenous lands will threaten Amazon forests and their valuable ecosystem services.

    One Earth. 2020; 3: 356-362

  • 89.
    • Rorato AC
    • Camara G
    • Escada MIS
    • Picoli MC
    • Moreira T
    • Verstegen JA

    Brazilian amazon indigenous peoples threatened by mining bill.

    Environmental Research Letters. 2020; 151040a3

  • 90.

    Bolsonaro abandons enhanced Amazon commitment same day he makes it.

  • 91.
    • Prist PR
    • Levin N
    • Metzger JP
    • et al.

    Collaboration across boundaries in the Amazon.

    Science. 2019; 366: 699-700

  • 92.
    • Evans D
    • Barnard P
    • Koh L
    • et al.

    Funding nature conservation: who pays?.

    Anim Conserv. 2012; 15: 215-216

  • 93.
    • International Union for the Conservation of Nature

    IUCN World Conservation Congress 2020 postponed.

  • 94.

    COP26 postponed.

  • 95.

    The Pacific Islands Nature Conservation Conference Is Going Virtual!.

  • 96.
    • O’Bryan CJ
    • Braczkowski AR
    • Magalhães RJS
    • McDonald-Madden E

    Conservation epidemiology of predators and scavengers to reduce zoonotic risk.

    Lancet Planet Health. 2020; 4: e304-e305

  • 97.
    • The Government of Western Australia

    Environmental investment to aid COVID-19 recovery.

  • 98.

    Growing better: ten critical transitions to transform food and land use. The global consultation report of the food and land use coalition.

    Food and Land Use Coalition,
    London2019

  • 99.

    Transforming our world: the 2030 agenda for sustainable development.

    Division for Sustainable Development Goals,
    New York2015

  • 100.
    • Scown MW
    • Brady MV
    • Nicholas KA

    Billions in misspent EU agricultural subsidies could support the Sustainable Development Goals.

    One Earth. 2020; 3: 237-250

  • 101.
    • Di Marco M
    • Baker ML
    • Daszak P
    • et al.

    Opinion: sustainable development must account for pandemic risk.

    Proc Natl Acad Sci USA. 2020; 117: 3888-3892

  • 102.
    • The Economics of Ecosystems and Biodiversity

    TEEB for national and international policy makers.

  • 103.

    Effects of COVID-19 on business and research.

    J Bus Res. 2020; 117: 284-289

  • 104.
    • Department of Conservation
    • New Zealand Government

    $1·1 billion investment to create 11,000 environment jobs in our regions.

  • 105.

    In reimagining a key new deal program, Joe Biden can eliminate its racism.

  • 106.

    Delivering economic stimulus through the conservation and land management sector. Economic impact assessment.

  • 107.
    • Can ÖE
    • D’Cruze N
    • Macdonald DW

    Dealing in deadly pathogens: taking stock of the legal trade in live wildlife and potential risks to human health.

    Glob Ecol Conserv. 2019; 17e00515

  • 108.
    • Petrikova I
    • Cole J
    • Farlow A

    COVID-19, wet markets, and planetary health.

    Lancet Planet Health. 2020; 4: e213-e214

  • 109.

    Overselling wildlife trade bans will not bolster conservation or pandemic preparedness.

    Lancet Planet Health. 2020; 4: e215-e216

  • 110.
    • Challender D
    • Hinsley A
    • Veríssimo D
    • t’Sas-Rolfes M

    Coronavirus: why a blanket ban on wildlife trade would not be the right response’.

    The Conservation. 2020; 8

  • 111.
    • Roe D
    • Dickman A
    • Kock R
    • Milner-Gulland E
    • Rihoy E
    • ‘t Sas-Rolfes M

    Beyond banning wildlife trade: COVID-19, conservation and development.

    World Dev. 2020; 136105121

  • 112.
    • Challender DW
    • MacMillan DC

    Poaching is more than an enforcement problem.

    Conserv Lett. 2014; 7: 484-494

  • 113.
    • Cunningham AA
    • Daszak P
    • Wood JL

    One Health, emerging infectious diseases and wildlife: two decades of progress?.

    Philos Trans R Soc Lond B Biol Sci. 2017; 37220160167

  • 114.
    • Kelly TR
    • Karesh WB
    • Johnson CK
    • et al.

    One Health proof of concept: bringing a transdisciplinary approach to surveillance for zoonotic viruses at the human-wild animal interface.

    Prev Vet Med. 2017; 137: 112-118

  • 115.
    • Wildlife Conservation Society

    Has Vietnam banned the wildlife trade to curb the risk of future pandemics?.

  • 116.

    Handbook of transnational environmental crime.

    Edward Elgar Publishing,
    Cheltenham2016

  • 117.

    What is conservation biology?.

    Bioscience. 1985; 35: 727-734

  • 118.
    • Bottrill MC
    • Joseph LN
    • Carwardine J
    • et al.

    Is conservation triage just smart decision making?.

    Trends Ecol Evol. 2008; 23: 649-654

  • 119.

    Effectiveness in conservation practice: pointers from medicine and public health.

    Conserv Biol. 2001; 15: 50-54

  • 120.
    • Simberloff D
    • Martin JL
    • Genovesi P
    • et al.

    Impacts of biological invasions: what’s what and the way forward.

    Trends Ecol Evol. 2013; 28: 58-66

  • 121.
    • McDonald-Madden E
    • Baxter PJ
    • Possingham HP

    Subpopulation triage: how to allocate conservation effort among populations.

    Conserv Biol. 2008; 22: 656-665

  • 122.
    • McCarthy MA
    • Possingham HP

    Active adaptive management for conservation.

    Conserv Biol. 2007; 21: 956-963

  • 123.

    Conservation planning: informed decisions for a healthier planet.

    Roberts and Company Publishers,
    Colorado2016

  • 124.

    Incorporating multiple criteria into the design of conservation area networks: a minireview with recommendations.

    Divers Distrib. 2006; 12: 125-137

  • 125.
    • Joseph LN
    • Maloney RF
    • Possingham HP

    Optimal allocation of resources among threatened species: a project prioritization protocol.

    Conserv Biol. 2009; 23: 328-338

  • 126.
    • Kark S
    • Tulloch A
    • Gordon A
    • Mazor T
    • Bunnefeld N
    • Levin N

    Crosss-boundary collaboration: key to the conservation puzzle.

    Curr Opin Environ Sustain. 2015; 12: 12-24

  • 127.
    • Nita A
    • Rozylowicz L
    • Manolache S
    • Ciocănea CM
    • Miu IV
    • Popescu VD

    Collaboration networks in applied conservation projects across Europe.

    PLoS One. 2016; 11e0164503

  • 128.
    • Okello A
    • Welburn S
    • Smith J

    Crossing institutional boundaries: mapping the policy process for improved control of endemic and neglected zoonoses in sub-Saharan Africa.

    Health Policy Plan. 2015; 30: 804-812

  • 129.
    • El Zowalaty ME
    • Jarhult JD

    From SARS to COVID-19: a previously unknown SARS- related coronavirus (SARS-CoV-2) of pandemic potential infecting humans—call for a One Health approach.

    One Health. 2020; 9100124



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *