Hidden biodiversity in microarthropods (Acari, Oribatida, Eremaeoidea, Caleremaeus)


  • 1.

    Zachos, F. E. Species Concepts in Biology. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-44966-1 (2016).

  • 2.

    Bickford, D. et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22(3), 148–155 (2007).

    PubMed 

    Google Scholar
     

  • 3.

    Skoracka, A., Magalhães, S., Rector, B. G. & Kuczyński, L. Cryptic speciation in the Acari: A function of species lifestyles or our ability to separate species?. Exp. Appl. Acarol. 67(2), 165–182 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Struck, T. H. et al. Finding evolutionary processes hidden in cryptic species. Trends Ecol. Evol. 33(3), 153–163 (2018).

    PubMed 

    Google Scholar
     

  • 5.

    Korshunova, T. et al. Multilevel fine-scale diversity challenges the ‘cryptic species’ concept. Sci. Rep. 9(1), 1–23 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 6.

    Schlick-Steiner, B. C. et al. Integrative taxonomy: A multiscore approach to exploring biodiversity. Annu. Rev. Entomol. 55, 421–438 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Pfenninger, M. & Schwenk, K. Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol. Biol. 7(1), 121 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Resch, M. C. et al. Where taxonomy based on subtle morphological differences is perfectly mirrored by huge genetic distances: DNA barcoding in Protura (Hexapoda). PloS one 9(3), e90653 (2014).

  • 9.

    Sun, X. et al. Delimiting species of Protaphorura (Collembola: Onychiuridae): integrative evidence based on morphology, DNA sequences and geography. Sci. Rep. 7(1), 1–9 (2017).

    ADS 

    Google Scholar
     

  • 10.

    Zhang, B., Chen, T. W., Mateos, E., Scheu, S. & Schaefer, I. DNA-based approaches uncover cryptic diversity in the European Lepidocyrtus lanuginosus species group (Collembola: Entomobryidae). Invertebr. Syst. 33(4), 661–670 (2019).


    Google Scholar
     

  • 11.

    Pfingstl, T., Lienhard, A., Baumann, J. & Koblmüller, S. A taxonomist‘s nightmare–Cryptic diversity in Caribbean intertidal arthropods (Arachnida, Acari, Oribatida). Mol. Phylogenet. Evol. 163, 107240 (2021).

  • 12.

    Blattner, L., Gerecke, R. & Von Fumetti, S. Hidden biodiversity revealed by integrated morphology and genetic species delimitation of spring dwelling water mite species (Acari, Parasitengona: Hydrachnidia). Parasites Vectors 12(1), 1–13 (2019).

    CAS 

    Google Scholar
     

  • 13.

    Young, M. R., Proctor, H. C., Dewaard, J. R. & Hebert, P. D. DNA barcodes expose unexpected diversity in Canadian mites. Mol. Ecol. 28(24), 5347–5359 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Young, M. R. et al. Linking morphological and molecular taxonomy for the identification of poultry house, soil, and nest dwelling mites in the Western Palearctic. Sci. Rep. 9(1), 1–8 (2019).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 15.

    Heethoff, M., Laumann, M., Weigmann, G. & Raspotnig, G. Integrative taxonomy: combining morphological, molecular and chemical data for species delineation in the parthenogenetic Trhypochthonius tectorum complex (Acari, Oribatida, Trhypochthoniidae). Front. Zool. 8, 2 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Navia, D. et al. Cryptic diversity in Brevipalpus mites (Tenuipalpidae). Zool. Scr. 42(4), 406–426 (2013).


    Google Scholar
     

  • 17.

    Pepato, A. R., Vidigal, T. H. & Klimov, P. B. Evaluating the boundaries of marine biogeographic regions of the Southwestern Atlantic using halacarid mites (Halacaridae), meiobenthic organisms with a low dispersal potential. Ecol. Evol. 9(23), 13359–13374 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Pfingstl, T., Lienhard, A. & Jagersbacher-Baumann, J. Hidden in the mangrove forest: The cryptic intertidal mite Carinozetes mangrovi sp. nov. (Acari, Oribatida, Selenoribatidae). Exp. Appl. Acarol. 63, 481–495 (2014).

  • 19.

    Pfingstl, T., Baumann, J. & Lienhard, A. The Caribbean enigma: The presence of unusual cryptic diversity in intertidal mites (Arachnida, Acari, Oribatida). Org. Divers. Evol. 19(4), 609–623 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Schaeffer, S., Kerschbaumer, M. & Koblmüller, S. Multiple new species: Cryptic diversity in the widespread mite species Cymbaeremaeus cymba (Oribatida, Cymbaeremaeidae). Mol. Phylogenet. Evol. 135, 185–192 (2019).


    Google Scholar
     

  • 21.

    Zhang, Z. Q. Animal biodiversity: An introduction to higher level classification and taxonomic richness. Zootaxa 3148, 99–103 (2011).


    Google Scholar
     

  • 22.

    Walter, D. E. & Proctor, H. C. Mites–ecology, evolution and behaviour: Life at a microscale. 2nd edn. (Springer, The Netherlands, 2013).

  • 23.

    Subías, L. S. Listado sistimatico, sininimico y biogeografico de los Acaros Oribatidos (Acariformes, Oribatida) del mundo (1748–2002). Graellsia 60, 3–305 (2004). (updated 2018).

  • 24.

    Norton, R. A. & Behan-Pelletier, V. Two unusual new species of Caleremaeus (Acari: Oribatida) from eastern North America, with redescription of C. retractus and reevaluation of the genus. Acarologia 60(2), 398–448. https://doi.org/10.24349/acarologia/20204375 (2020).

  • 25.

    Michael, A. D. Further notes on British Oribatidæ. J. R. Microsc. Soc. 2(1), 1–18 (1882).


    Google Scholar
     

  • 26.

    Banks, N. On some Acarina from North America. Psyche 54, 110–141 (1947).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Sellnick, M. Die Oribatiden der Bernsteinsammlung der Universität Königsberg. Schr. physik.-ökonom. Ges. Königsberg 59, 21–42 (1931).

  • 28.

    Mihelčič, F. Beitrag zur Kenntnis der Oribatei und Collembolen der Humusböden. Arch. Zool. Ital. 37, 93–106 (1952).

  • 29.

    Seniczak, A. & Seniczak, St. Morphological ontogeny of Caleremaeus monilipes (Acari: Oribatida: Caleremaeidae), with comments on Caleremaeus Berlese. Syst. Appl. Acarol. 24, 1995–2009. https://doi.org/10.11158/saa.24.11.3 (2019).

  • 30.

    Ayyildiz, N., Toluk, A., Taskiran, M. & Tasdemir, A. Two new records of the genera Cepheus CL Koch, 1835 and Caleremaeus Berlese, 1910 (Acari: Oribatida) from Turkey, with notes on their distribution and ecology. Türk. entomol. bült. 1(3), 145–150 (2011).


    Google Scholar
     

  • 31.

    Karppinen, E. & Krivolutsky, D. A. List of oribatid mites (Acarina, Oribatei) of northern palaearctic region I. Europe. Acta Entomol. Fenn. 41, 1–18 (1982).


    Google Scholar
     

  • 32.

    Luxton, M. Oribatid mites of the British Isles: A check-list and notes on biogeography (Acari: Oribatida). J. Nat. Hist. 30(6), 803–822 (1996).


    Google Scholar
     

  • 33.

    Weigmann, G. Die Tierwelt Deutschlands, 76. Teil Hornmilben (Oribatida), Goecke & Evers, Keltern (2006).

  • 34.

    Fischer, B. M. & Schatz, H. Biodiversity of oribatid mites (Acari: Oribatida) along an altitudinal gradient in the Central Alps. Zootaxa 3626(4), 429–454 (2013).

    PubMed 

    Google Scholar
     

  • 35.

    Höpperger, M. & Schatz, H. Hornmilben (Acari, Oribatida) von Castelfeder (Südtirol, Italien). Gredleriana 13, 71–98 (2013).


    Google Scholar
     

  • 36.

    Schuster, R. Erstnachweise einiger bodenbewohnender Hornmilben-Arten für das Bundesland Oberösterreich (Acari, Oribatida). Beitr. Naturk. Oberösterreichs 5, 135–138 (1997).


    Google Scholar
     

  • 37.

    Schatz, H. U.-Ordn. Oribatei, Hornmilben. Catalogus Faunae Austriae, Teil IXi. Österreichische Akademie der Wissenschaften, Wien (1983).

  • 38.

    Schatz, H. Ökologische Untersuchungen an Wirbellosen des zentralalpinen Hochgebirges (Obergurgl, Tirol). – II. Phänologie und Zönotik von Oribatiden (Acari). Alpin-Biol. Stud., v. 10 (ed Janetschek, H.) 15–120 (Veröff. Univ. Innsbruck, v. 117, 1979).

  • 39.

    Lienhard, A., Schaeffer, S., Krisper, G. & Sturmbauer, C. Reverse evolution and cryptic diversity in putative sister families of the Oribatida (Acari). J. Zool. Syst. Evol. Res. 52, 86–93 (2014).


    Google Scholar
     

  • 40.

    Carstens, B. C., Pelletier, T. A., Reid, N. M. & Satler, J. D. How to fail at species delimitation. Mol. Ecol. 22(17), 4369–4383 (2013).

    PubMed 

    Google Scholar
     

  • 41.

    Mąkol, J., Saboori, A. & Felska, M. Inter-and intraspecific variability of morphological and molecular characters in Allothrombium species, with special reference to Allothrombium fuliginosum. Exp. Appl. Acarol. 78(4), 485–504 (2019).

    PubMed 

    Google Scholar
     

  • 42.

    Hebert, P. D., Stoeckle, M. Y., Zemlak, T. S. & Francis, C. M. Identification of birds through DNA barcodes. PLoS biology 2(10), e312 (2004).

  • 43.

    Salomone, N., Emerson, B. C., Hewitt, G. M. & Bernini, F. Phylogenetic relationships among the Canary Island Steganacaridae (Acari, Oribatida) inferred from mitochondrial DNA sequence data. Mol. Ecol. 11(1), 79–89 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Delić, T., Trontelj, P., Rendoš, M. & Fišer, C. The importance of naming cryptic species and the conservation of endemic subterranean amphipods. Sci. Rep. 7(1), 1–12 (2017).


    Google Scholar
     

  • 45.

    Fontaneto, D., Kaya, M., Herniou, E. A. & Barraclough, T. G. Extreme levels of hidden diversity in microscopic animals (Rotifera) revealed by DNA taxonomy. Mol. Phylogenet. Evol. 53(1), 182–189 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Laumann, M. et al. Speciation in the parthenogenetic oribatid mite genus Tectocepheus (Acari, Oribatida) as indicated by molecular phylogeny. Pedobiologia 51(2), 111–122 (2007).

    CAS 

    Google Scholar
     

  • 47.

    Martin, P., Dabert, M. & Dabert, J. Molecular evidence for species separation in the water mite Hygrobates nigromaculatus Lebert, 1879 (Acari, Hydrachnidia): Evolutionary consequences of the loss of larval parasitism. Aquat. Sci. 72(3), 347–360 (2010).

    CAS 

    Google Scholar
     

  • 48.

    Zhang, B., Chen, T. W., Mateos, E., Scheu, S. & Schaefer, I. Cryptic species in Lepidocyrtus lanuginosus (Collembola: Entomobryidae) are sorted by habitat type. Pedobiologia 68, 12–19 (2018).


    Google Scholar
     

  • 49.

    Luxton, M. Studies on the oribatid mites of a Danish beech wood soil I. Nutritional biology. Pedobiologia 12, 434–463 (1972).


    Google Scholar
     

  • 50.

    Skubala, P. & Maslak, M. Succession of oribatid fauna (Acari, Oribatida) in fallen spruce trees: Deadwood promotes species and functional diversity in Trends in acarology: Proceedings of the 12th International Congress (eds Sabelis, M. W. & Bruin, J.) 123–128 (Springer, Dordrecht, 2009).

  • 51.

    Siira-Pietikäinen, A., Penttinen, R. & Huhta, V. Oribatid mites (Acari: Oribatida) in boreal forest floor and decaying wood. Pedobiologia 52(2), 111–118 (2008).


    Google Scholar
     

  • 52.

    Skubała, P. & Sokołowska, M. Oribatid fauna (Acari, Oribatida) in fallen spruce trees in the Babia Góra National Park. Biol Lett. 43, 243–248 (2006).


    Google Scholar
     

  • 53.

    Fontaneto, D., Barraclough, T. G., Chen, K., Ricci, C. & Herniou, E. A. Molecular evidence for broad-scale distributions in bdelloid rotifers: Everything is not everywhere but most things are very widespread. Mol. Ecol. 17(13), 3136–3146 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Lindo, Z. Communities of Oribatida associated with litter input in western red cedar tree crowns: Are moss mats ‘magic carpets’ for oribatid mite dispersal? in Trends in Acarology Proceedings of the 12th International Congress (eds Sabelis, M. W. & Bruin, J.) 143–148 (Springer, Dordrecht, 2009).

  • 55.

    Lehmitz, R., Russell, D., Hohberg, K., Christian, A. & Xylander, W. E. Wind dispersal of oribatid mites as a mode of migration. Pedobiologia 54(3), 201–207 (2011).


    Google Scholar
     

  • 56.

    Krivolutsky, D. A. & Lebedeva, N. V. Oribatid mites (Oribatei) in bird feathers: Passeriformes. Acta Zool. Lituanica 14(2), 19–38 (2004).


    Google Scholar
     

  • 57.

    Lebedeva, N. V. & Lebedev, V. D. Transport of oribatid mites to the polar areas by birds in Integrative Acarology. Proceedings of the 6th European Congress of the European Association of Acarologists (eds Bertrand, M. et al.) 359–367 (2008).

  • 58.

    Lebedeva, N. V. & Poltavskaya, M. P. Oribatid mites (Acari, Oribatida) of plain area of the Southern European Russia. Zootaxa 3709(2), 101–133 (2013).

    PubMed 

    Google Scholar
     

  • 59.

    Manu, M. et al. Soil mite communities (Acari: Mesostigmata, Oribatida) as bioindicators for environmental conditions from polluted soils. Sci. Rep. 9(1), 1–13 (2019).

    ADS 

    Google Scholar
     

  • 60.

    Zaitsev, A. S., Gongalsky, K. B., Persson, T. & Bengtsson, J. Connectivity of litter islands remaining after a fire and unburnt forest determines the recovery of soil fauna. Appl. Soil Ecol. 83, 101–108. https://doi.org/10.1016/j.apsoil.2014.01.007 (2014).

    Article 

    Google Scholar
     

  • 61.

    Moraza, M. L. & Peña, M. A. Oribatid mites (Acari: Oribatida) in selected habitats of La Gomera (Canary Islands, Spain). Boln. Asoc. Esp. Ent. 29, 39–54 (2005).


    Google Scholar
     

  • 62.

    Miko, L. & Travé, J. Hungarobelbidae n. Fa., with a description of Hungarobelba pyrenaica n. sp. (Acarina, Oribatida). Acarologia 37, 133–155 (1996).

  • 63.

    Subías, L. S. & Arillo, A. Acari, Oribatei, Gymnonota II. Oppioidea in Fauna Iberica, vol. 15 (eds Ramos A. et al.) (Madrid, Museo de Ciencias Naturales, 2001).

  • 64.

    Bulanova-Zachvatkina, E. M. Family Caleremaeidae in A key to the soil-inhabiting mites. Sarcoptiformes (eds Gilyarov M. S. & Krivolutsky D. A.) 193–194 (Moscow: Nauka, 1975) [in Russian]

  • 65.

    Heethoff, M. Cryptic species—Conceptual or terminological chaos? A response to Struck et al. Trend Ecol. Ecol. 33 (5), 310 (2008).

  • 66.

    Struck, et al. Cryptic species–More than terminological Chaos: A reply to Heethoff. Trend Ecol. 33(5), 310–312 (2018).


    Google Scholar
     

  • 67.

    Darwin, C. R. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. (London, John Murray, 1859).

  • 68.

    Lienhard, A. & Schaeffer, S. Extracting the invisible: Obtaining high quality DNA is a challenging task in small arthropods. PeerJ. 7, e6753 (2019).

  • 69.

    Otto, J. C. & Wilson, K. Assessment of the usefulness of ribosomal 18S and mitochondrial COI sequences in Prostigmata phylogeny in Acarology: Proceedings of the 10th International Congress (eds. Halliday R. B. et al.) 100–109 (CSIRO Publishing, 2001).

  • 70.

    Regier, J. C. & Shultz, J. W. Molecular phylogeny of the major arthropod groups indicates polyphyly of crustaceans and a new hypothesis for the origin of hexapods. Mol. Biol. Evol. 14, 902–913 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 71.

    Schaeffer, S., Krisper, G., Pfingstl, T. & Sturmbauer, C. Description of Scutovertex pileatus sp. nov. (Acari, Oribatida, Scutoverticidae) and molecular phylogenetic investigation of congeneric species in Austria. Zool. Anz. 247, 249–258 (2008).

  • 72.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

  • 73.

    Lefort, V., Longueville, J. E. & Gascuel, O. SMS: smart model selection in PhyML. Mol. Biol. Evol. 34, 2422–2424 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Boil. 59(3), 307–321 (2010).

  • 75.

    Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12), 1572–1574 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 76.

    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67(5), 901–904. https://doi.org/10.1093/sysbio/syy032 (2018).

  • 77.

    Clement, M., Snell, Q., Walker, P., Posada, D. & Crandall, K. TCS: Estimating gene genealogies. Parallel Distrib. Process. Symp. Int. Proc. 2, 184–184 (2002).


    Google Scholar
     

  • 78.

    Leigh, J. W. & Bryant, D. popart: full-feature software for haplotype network construction. Methods Ecol. Evol. 6(9), 1110–1116 (2015).


    Google Scholar
     

  • 79.

    Miller, M. P. Alleles in Space (AIS): computer software for the joint analysis of interindividual spatial and genetic information. J. Hered. 96, 722–724 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 80.

    Pons, J. et al. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 55(4), 595–609 (2006).

    PubMed 

    Google Scholar
     

  • 81.

    Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 82.

    Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 83.

    Kapli, P. et al. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33(11), 1630–1638 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 84.

    Rannala, B. & Yang, Z. Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164, 1645–1656 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Yang, Z. & Rannala, B. Bayesian species delimitation using multilocus sequence data. Proc. Natl. Acad. Sci. 107(20), 9264–9269 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published.