Challenges and opportunities for carbon neutrality in China


  • 1.

    Friedlingstein, P. et al. Global Carbon Budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).


    Google Scholar
     

  • 2.

    Guan, D. et al. Structural decline in China’s CO2 emissions through transitions in industry and energy systems. Nat. Geosci. 11, 551–555 (2018).


    Google Scholar
     

  • 3.

    Jackson, R. B. et al. Reaching peak emissions. Nat. Clim. Change 6, 7–10 (2015).


    Google Scholar
     

  • 4.

    Peters, G. P. et al. Key indicators to track current progress and future ambition of the Paris Agreement. Nat. Clim. Change 7, 118–122 (2017).


    Google Scholar
     

  • 5.

    Liu, Z., Zheng, B. & Zhang, Q. New dynamics of energy use and CO2 emissions in China. Preprint at arXiv https://arxiv.org/abs/1811.09475 (2018).

  • 6.

    Shan, Y., Huang, Q., Guan, D. & Hubacek, K. China CO2 emission accounts 2016–2017. Sci. Data 7, 54 (2020).


    Google Scholar
     

  • 7.

    Duan, H. et al. Assessing China’s efforts to pursue the 1.5 degrees C warming limit. Science 372, 378–385 (2021).


    Google Scholar
     

  • 8.

    Jiang, K., Zhuang, X., Miao, R. & He, C. China’s role in attaining the global 2° C target. Clim. Policy 13, 55–69 (2013).


    Google Scholar
     

  • 9.

    Crippa, M. et al. Fossil CO2 Emissions of All World Countries — 2020 Report (Publications Office of the European Union, 2020).

  • 10.

    Detailed CO2 estimates (Edition 2020). In IEA CO2 Emissions from Fuel Combustion Statistics: Greenhouse Gas Emissions from Energy (OECD, 2021); https://doi.org/10.1787/f7c42083-en.

  • 11.

    Statistical Review of World Energy 2020 (BP, 2020) https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf.

  • 12.

    Blue Carbon Map (IPE, 2021); http://wwwen.ipe.org.cn/MapLowCarbon/LowCarbon.html.

  • 13.

    Qi, Y., Wu, T., He, J. & King, D. A. China’s carbon conundrum. Nat. Geosci. 6, 507–509 (2013).


    Google Scholar
     

  • 14.

    Shan, Y. et al. China CO2 emission accounts 1997–2015. Sci. Data 5, 170201 (2018).


    Google Scholar
     

  • 15.

    Qi, Y., Stern, N., Wu, T., Lu, J. & Green, F. China’s post-coal growth. Nat. Geosci. 9, 564–566 (2016).


    Google Scholar
     

  • 16.

    Statistical Communiqué of the People’s Republic of China on the 2019 National Economic and Social Development (National Bureau of Statistics of China, 2020); http://www.stats.gov.cn/english/PressRelease/202002/t20200228_1728917.html.

  • 17.

    Marland, G. China’s uncertain CO2 emissions. Nat. Clim. Change 2, 645–646 (2012).


    Google Scholar
     

  • 18.

    Hong, C. et al. Variations of China’s emission estimates: response to uncertainties in energy statistics. Atmos. Chem. Phys. 17, 1227–1239 (2017).


    Google Scholar
     

  • 19.

    Liu, Z. et al. Four system boundaries for carbon accounts. Ecol. Model. 318, 118–125 (2015).


    Google Scholar
     

  • 20.

    Guan, D., Liu, Z., Geng, Y., Lindner, S. & Hubacek, K. The gigatonne gap in China’s carbon dioxide inventories. Nat. Clim. Change 2, 672–675 (2012).


    Google Scholar
     

  • 21.

    Zheng, H. et al. How modifications of China’s energy data affect carbon mitigation targets. Energy Policy 116, 337–343 (2018).


    Google Scholar
     

  • 22.

    Ma, B., Song, G., Zhang, L. & Sonnenfeld, D. A. Explaining sectoral discrepancies between national and provincial statistics in China. China Econ. Rev. 30, 353–369 (2014).


    Google Scholar
     

  • 23.

    Feng, K. et al. Outsourcing CO2 within China. Proc. Natl Acad. Sci. USA 110, 11654–11659 (2013).


    Google Scholar
     

  • 24.

    Feng, K., Siu, Y. L., Guan, D. & Hubacek, K. Analyzing drivers of regional carbon dioxide emissions for China. J. Ind. Ecol. 16, 600–611 (2012).


    Google Scholar
     

  • 25.

    Liu, Z., Geng, Y., Lindner, S. & Guan, D. Uncovering China’s greenhouse gas emission from regional and sectoral perspectives. Energy 45, 1059–1068 (2012).


    Google Scholar
     

  • 26.

    Zhou, Y., Shan, Y., Liu, G. & Guan, D. Emissions and low-carbon development in Guangdong-Hong Kong-Macao Greater Bay Area cities and their surroundings. Appl. Energy 228, 1683–1692 (2018).


    Google Scholar
     

  • 27.

    Liu, Z. China’s carbon emissions report 2015 (Harvard Kennedy School of Government, 2015).

  • 28.

    Liu, Z. et al. Embodied energy use in China’s industrial sectors. Energy Policy 49, 751–758 (2012).


    Google Scholar
     

  • 29.

    Liu, Z. et al. Energy policy: a low-carbon road map for China. Nature 500, 143–145 (2013).


    Google Scholar
     

  • 30.

    Zheng, H. et al. Regional determinants of China’s consumption-based emissions in the economic transition. Environ. Res. Lett. 15, 074001 (2020).


    Google Scholar
     

  • 31.

    Guan, D., Hubacek, K., Weber, C. L., Peters, G. P. & Reiner, D. M. The drivers of Chinese CO2 emissions from 1980 to 2030. Glob. Environ. Change 18, 626–634 (2008).


    Google Scholar
     

  • 32.

    Zheng, X. et al. Drivers of change in China’s energy-related CO2 emissions. Proc. Natl Acad. Sci. USA 117, 29–36 (2020).


    Google Scholar
     

  • 33.

    A series of Reports on Economic and Social Development Achievements in the 40 Years of Reform and Opening up [in Chinese] (National Bureau of Statistics of China, 2018); http://www.stats.gov.cn/ztjc/ztfx/ggkf40n/201808/t20180827_1619235.html.

  • 34.

    National Bureau of Statistics of China. National Data http://data.stats.gov.cn/english/ (2020).

  • 35.

    Zheng, J. et al. The slowdown in China’s carbon emissions growth in the new phase of economic development. One Earth 1, 240–253 (2019).


    Google Scholar
     

  • 36.

    Green, F. & Stern, N. China’s changing economy: implications for its carbon dioxide emissions. Clim. Policy 17, 423–442 (2016).


    Google Scholar
     

  • 37.

    Yu, Y. & Du, Y. Impact of technological innovation on CO2 emissions and emissions trend prediction on ‘new normal’ economy in China. Atmos. Pollut. Res. 10, 152–161 (2019).


    Google Scholar
     

  • 38.

    Guan, D., Peters, G. P., Weber, C. L. & Hubacek, K. Journey to world top emitter: an analysis of the driving forces of China’s recent CO2 emissions surge. Geophys. Res. Lett. 36, L04709 (2009).


    Google Scholar
     

  • 39.

    Peters, G. P., Guan, D., Hubacek, K., Minx, J. C. & Weber, C. L. Effects of China’s economic growth. Science 328, 824–825 (2010).


    Google Scholar
     

  • 40.

    Minx, J. C. et al. A “carbonizing dragon”: China’s fast growing CO2 emissions revisited. Env. Sci. Technol. 45, 9144–9153 (2011).


    Google Scholar
     

  • 41.

    Peters, G. P. & Hertwich, E. G. CO2 embodied in international trade with implications for global climate policy. Env. Sci. Technol. 42, 1401–1407 (2008).


    Google Scholar
     

  • 42.

    Mi, Z., Meng, J., Green, F., Coffman, D. M. & Guan, D. China’s “exported carbon” peak: patterns, drivers, and implications. Geophys. Res. Lett. 45, 4309–4318 (2018).


    Google Scholar
     

  • 43.

    Liu, Z. et al. Targeted opportunities to address the climate–trade dilemma in China. Nat. Clim. Change 6, 201–206 (2015).


    Google Scholar
     

  • 44.

    Pan, C. et al. Emissions embodied in global trade have plateaued due to structural changes in China. Earth Future 5, 934–946 (2017).


    Google Scholar
     

  • 45.

    Meng, J. et al. The rise of south–south trade and its effect on global CO2 emissions. Nat. Commun. 9, 1871 (2018).


    Google Scholar
     

  • 46.

    Mi, Z. et al. Chinese CO2 emission flows have reversed since the global financial crisis. Nat. Commun. 8, 1712 (2017).


    Google Scholar
     

  • 47.

    Wood, R. et al. Beyond peak emission transfers: historical impacts of globalization and future impacts of climate policies on international emission transfers. Clim. Policy 20, S14–S27 (2019).


    Google Scholar
     

  • 48.

    Liu, Z. et al. Embodied carbon emissions in China–US trade. Sci. China Earth Sci. 63, 1577–1586 (2020).


    Google Scholar
     

  • 49.

    Mi, Z. et al. Pattern changes in determinants of Chinese emissions. Environ. Res. Lett. 12, 074003 (2017).


    Google Scholar
     

  • 50.

    Peters, G. P. et al. Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nat. Clim. Change 2, 2–4 (2011).


    Google Scholar
     

  • 51.

    Friedlingstein, P. et al. Persistent growth of CO2 emissions and implications for reaching climate targets. Nat. Geosci. 7, 709–715 (2014).


    Google Scholar
     

  • 52.

    Sadorsky, P. Energy related CO2 emissions before and after the financial crisis. Sustainability 12, 3867 (2020).


    Google Scholar
     

  • 53.

    Shearer, C., Yu, A., & Nace, T. Tsunami Warning: Can China’s Central Authorities Stop a Massive Surge in New Coal Plants Caused by Provincial Overpermitting? (CoalSwarm, 2018); https://endcoal.org/2018/09/tsunami-warning/.

  • 54.

    The State Council of the People’s Republic of China. Report on the Work of the Government (ENGLISH.GOV.CN, 2020); http://english.www.gov.cn/premier/news/202005/30/content_WS5ed197f3c6d0b3f0e94990da.html.

  • 55.

    Liu, Z., Ciais, P., Deng, Z. et al. Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nat. Commun. 11, 5172 (2020).


    Google Scholar
     

  • 56.

    Maraseni, T. K., Qu, J., Zeng, J. & Liu, L. An analysis of magnitudes and trends of household carbon emissions in China between 1995 and 2011. Int. J. Environ. Res. 10, 179–192 (2016).


    Google Scholar
     

  • 57.

    Cai, B., Li, W., Dhakal, S. & Wang, J. Source data supported high resolution carbon emissions inventory for urban areas of the Beijing–Tianjin–Hebei region: spatial patterns, decomposition and policy implications. J. Environ. Manage. 206, 786–799 (2018).


    Google Scholar
     

  • 58.

    Li, Y., Zhao, R., Liu, T. & Zhao, J. Does urbanization lead to more direct and indirect household carbon dioxide emissions? Evidence from China during 1996–2012. J. Clean. Prod. 102, 103–114 (2015).


    Google Scholar
     

  • 59.

    Mi, Z. et al. Economic development and converging household carbon footprints in China. Nat. Sustain. 3, 529–537 (2020).


    Google Scholar
     

  • 60.

    Wiedenhofer, D. et al. Unequal household carbon footprints in China. Nat. Clim. Change 7, 75–80 (2016).


    Google Scholar
     

  • 61.

    Yuan, R., Rodrigues, J. F. D. & Behrens, P. Driving forces of household carbon emissions in China: a spatial decomposition analysis. J. Clean. Prod. 233, 932–945 (2019).


    Google Scholar
     

  • 62.

    Mi, Z. et al. China’s energy consumption in the new normal. Earth Future 6, 1007–1016 (2018).


    Google Scholar
     

  • 63.

    Zhang Gaoli Attends UN Climate Summit and Delivers Speech (Ministry of Foreign Affairs of the People’s Republic of China, 2014); https://www.fmprc.gov.cn/mfa_eng/zxxx_662805/t1194544.shtml.

  • 64.

    Cui, R. et al. A High Ambition Coal Phaseout in China: Feasible Strategies Through a Comprehensive Plant-by-plant Assessment (Center for Global Sustainability, 2020); https://cgs.umd.edu/sites/default/files/2020-01/1.13.2020_AHighAmbitionCoalPhaseoutInChina_EN_fullreport%20.pdf.

  • 65.

    Tong, D. et al. Committed emissions from existing energy infrastructure jeopardize 1.5 degrees C climate target. Nature 572, 373–377 (2019).


    Google Scholar
     

  • 66.

    CO2 Emissions Reductions in China, 2015–2060 by Scenario (IEA, 2020); https://www.iea.org/data-and-statistics/charts/co2-emissions-reductions-in-china-2015-2060-by-scenario (2020).

  • 67.

    World Energy Outlook 2020 (IEA, 2020); https://www.iea.org/reports/world-energy-outlook-2020.

  • 68.

    Renewables 2020 Global Status Report (REN21, 2020); https://www.ren21.net/gsr-2020/ (2020).

  • 69.

    China Electricity Industry Statistic Bulletin 2019 [in Chinese] (CEC, 2020); https://www.cec.org.cn/upload/1/editor/1579576517375.pdf.

  • 70.

    He, G. et al. Enabling a rapid and just transition away from coal in China. One Earth 3, 187–194 (2020).


    Google Scholar
     

  • 71.

    The State Council Issues Action Plan on Prevention and Control of Air Pollution Introducing Ten Measures to Improve Air Quality (Ministry of Ecology and Environment of the People’s Republic of China, 2013); http://english.mee.gov.cn/News_service/infocus/201309/t20130924_260707.shtml.

  • 72.

    Report on the Work of the Government (The State Council of the People’s Republic of China, 2017); http://english.www.gov.cn/premier/news/2017/03/16/content_281475597911192.htm.

  • 73.

    Energy Production and Consumption Revolution Strategy (2016–2030) [in Chinese] (NDRC, 2017); https://www.ndrc.gov.cn/xxgk/zcfb/tz/201704/t20170425_962953.html.

  • 74.

    13th Five-year Plan for Energy Development of the People’s Republic of China. [in Chinese] (NDRC, 2017); https://www.ndrc.gov.cn/fggz/fzzlgh/gjjzxgh/201705/t20170517_1196766.html.

  • 75.

    New Energy Outlook 2019 (BNEF, 2019); https://about.bnef.com/new-energy-outlook/.

  • 76.

    Shearer, C. & Myllyvirta, L. China Dominates 2020 Coal Development (Global Energy Monitor, 2021).

  • 77.

    Myllyvirta, L., Shen, X. & Lammi, H. Is China Doubling Down on its Coal Power Bubble? (Greenpeace East Asia, 2016).

  • 78.

    Cui, R. Y. et al. A plant-by-plant strategy for high-ambition coal power phaseout in China. Nat. Commun. 12, 1468 (2021).


    Google Scholar
     

  • 79.

    Analysis and Forecast of China Power Demand-supply Situation 2020–2021 (CEC. 2021); https://english.cec.org.cn/detail/index.html?3-1128.

  • 80.

    He, J. et al. Comprehensive report on China’s long-term low-carbon development strategies and pathways. Chin. J. Popul. Resour. Environ. 18, 263–295 (2020).


    Google Scholar
     

  • 81.

    He, G. & Kammen, D. M. Where, when and how much wind is available? A provincial-scale wind resource assessment for China. Energy Policy 74, 116–122 (2014).


    Google Scholar
     

  • 82.

    He, G. & Kammen, D. M. Where, when and how much solar is available? A provincial-scale solar resource assessment for China. Renew. Energy 85, 74–82 (2016).


    Google Scholar
     

  • 83.

    McElroy, M. B., Lu, X., Nielsen, C. P. & Wang, Y. Potential for wind-generated electricity in China. Science 325, 1378–1380 (2009).


    Google Scholar
     

  • 84.

    Xinhuanet. Remarks by Chinese President Xi Jinping at Climate Ambition Summit. Xinhuanet http://www.xinhuanet.com/english/2020-12/12/c_139584803.htm (2020).

  • 85.

    Jiang, K., He, C., Dai, H., Liu, J. & Xu, X. Emission scenario analysis for China under the global 1.5°C target. Carbon Manag. 9, 481–491 (2018).


    Google Scholar
     

  • 86.

    Zhongying, W. & Sandholt, K. Thoughts on China’s energy transition outlook. Energy Transit. 3, 59–72 (2019).


    Google Scholar
     

  • 87.

    Outline of the 14th Five-year Plan (2021–2025) for National Economic and Social Development and Vision 2035 of the People’s Republic of China [in Chinese] (The State Council of the People’s Republic of China, 2021); http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm.

  • 88.

    Chen, Y. et al. Prospects in China for nuclear development up to 2050. Prog. Nucl. Energy 103, 81–90 (2018).


    Google Scholar
     

  • 89.

    He, G. et al. SWITCH-China: a systems approach to decarbonizing China’s power system. Env. Sci. Technol. 50, 5467–5473 (2016).


    Google Scholar
     

  • 90.

    Yu, S. et al. CCUS in China’s mitigation strategy: insights from integrated assessment modeling. Int. J. Greenh. Gas. Control. 84, 204–218 (2019).


    Google Scholar
     

  • 91.

    He, G. et al. Rapid cost decrease of renewables and storage accelerates the decarbonization of China’s power system. Nat. Commun. 11, 2486 (2020).


    Google Scholar
     

  • 92.

    Zhang, C. et al. Virtual scarce water embodied in inter-provincial electricity transmission in China. Appl. Energy 187, 438–448 (2017).


    Google Scholar
     

  • 93.

    Zhang, C., Zhong, L. & Wang, J. Decoupling between water use and thermoelectric power generation growth in China. Nat. Energy 3, 792–799 (2018).


    Google Scholar
     

  • 94.

    Yang, Y. et al. Mapping global carbon footprint in China. Nat. Commun. 11, 2237 (2020).


    Google Scholar
     

  • 95.

    Peng, W., Yang, J., Lu, X. & Mauzerall, D. L. Potential co-benefits of electrification for air quality, health, and CO2 mitigation in 2030 China. Appl. Energy 218, 511–519 (2018).


    Google Scholar
     

  • 96.

    Zhou, N., Khanna, N., Feng, W., Ke, J. & Levine, M. Scenarios of energy efficiency and CO2 emissions reduction potential in the buildings sector in China to year 2050. Nat. Energy 3, 978–984 (2018).


    Google Scholar
     

  • 97.

    Wang, H., Ou, X. & Zhang, X. Mode, technology, energy consumption, and resulting CO2 emissions in China’s transport sector up to 2050. Energy Policy 109, 719–733 (2017).


    Google Scholar
     

  • 98.

    Rissman, J. et al. Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. Appl. Energy 266, 114848 (2020).


    Google Scholar
     

  • 99.

    Minx, J. C. et al. Negative emissions — part 1: research landscape and synthesis. Environ. Res. Lett. 13, 063001 (2018).


    Google Scholar
     

  • 100.

    Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2019).


    Google Scholar
     

  • 101.

    Piao, S. et al. The carbon balance of terrestrial ecosystems in China. Nature 458, 1009–1013 (2009).


    Google Scholar
     

  • 102.

    Wang, J. et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature 586, 720–723 (2020).


    Google Scholar
     

  • 103.

    Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2, 232–250 (2021).


    Google Scholar
     

  • 104.

    Hu, H., Wang, S., Guo, Z., Xu, B. & Fang, J. The stage-classified matrix models project a significant increase in biomass carbon stocks in China’s forests between 2005 and 2050. Sci. Rep. 5, 11203 (2015).


    Google Scholar
     

  • 105.

    Qiu, Z., Feng, Z., Song, Y., Li, M. & Zhang, P. Carbon sequestration potential of forest vegetation in China from 2003 to 2050: predicting forest vegetation growth based on climate and the environment. J. Clean. Prod. 252, 119715 (2020).


    Google Scholar
     

  • 106.

    Zhang, H., Feng, Z., Chen, P. & Chen, X. Development of a tree growth difference equation and its application in forecasting the biomass carbon stocks of chinese forests in 2050. Forests 10, 582 (2019).


    Google Scholar
     

  • 107.

    Jiao, N. Developing ocean negative carbon emission technology to support national carbon neutralization [in Chinese]. Bull. Chin. Acad. Sci. 36, 179–187 (2021).


    Google Scholar
     

  • 108.

    Chalmers, H. Fundamentals point to carbon capture. Nat. Clim. Change 9, 348–348 (2019).


    Google Scholar
     

  • 109.

    Mac Dowell, N., Fennell, P. S., Shah, N. & Maitland, G. C. The role of CO2 capture and utilization in mitigating climate change. Nat. Clim. Change 7, 243–249 (2017).


    Google Scholar
     

  • 110.

    Jiang, K. et al. China’s carbon capture, utilization and storage (CCUS) policy: a critical review. Renew. Sustain. Energy Rev. 119, 109601 (2020).


    Google Scholar
     

  • 111.

    Liu, H. J., Were, P., Li, Q., Gou, Y. & Hou, Z. Worldwide status of CCUS technologies and their development and challenges in China. Geofluids 2017, 1–25 (2017).


    Google Scholar
     

  • 112.

    Sun, L., Dou, H., Li, Z., Hu, Y. & Hao, X. Assessment of CO2 storage potential and carbon capture, utilization and storage prospect in China. J. Energy Inst. 91, 970–977 (2018).


    Google Scholar
     

  • 113.

    Global CCS Institute. The global status of CCS report 2020 (Global CCS Institute, 2020).

  • 114.

    Global CCS Institute. CCS Facilities Database (CO2RE, 2019); https://co2re.co/FacilityData.

  • 115.

    Fuss, S. et al. Betting on negative emissions. Nat. Clim. Change 4, 850–853 (2014).


    Google Scholar
     

  • 116.

    Huang, X., Chang, S., Zheng, D. & Zhang, X. The role of BECCS in deep decarbonization of China’s economy: a computable general equilibrium analysis. Energy Econ. 92, 104968 (2020).


    Google Scholar
     

  • 117.

    Xi, F. et al. Substantial global carbon uptake by cement carbonation. Nat. Geosci. 9, 880–883 (2016).


    Google Scholar
     

  • 118.

    Skocek, J., Zajac, M. & Ben Haha, M. Carbon capture and utilization by mineralization of cement pastes derived from recycled concrete. Sci. Rep. 10, 5614 (2020).


    Google Scholar
     

  • 119.

    Habert, G. et al. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat. Rev. Earth Environ. 1, 559–573 (2020).


    Google Scholar
     

  • 120.

    Guo, R. et al. Global CO2 uptake by cement from 1930 to 2019. Earth Syst. Sci. Data 13, 1791–1805 (2021).


    Google Scholar
     

  • 121.

    Churkina, G. et al. Buildings as a global carbon sink. Nat. Sustain. 3, 269–276 (2020).


    Google Scholar
     

  • 122.

    Hanna, R., Abdulla, A., Xu, Y. & Victor, D. G. Emergency deployment of direct air capture as a response to the climate crisis. Nat. Commun. 12, 368 (2021).


    Google Scholar
     

  • 123.

    McQueen, N. et al. A review of direct air capture (DAC): scaling up commercial technologies and innovating for the future. Prog. Energy 3, 032001 (2021).


    Google Scholar
     

  • 124.

    Lee, C. M. & Erickson, P. How does local economic development in cities affect global GHG emissions? Sustain. Cities Soc. 35, 626–636 (2017).


    Google Scholar
     

  • 125.

    Sugar, L., Kennedy, C. & Leman, E. Greenhouse gas emissions from Chinese cities. J. Ind. Ecol. 16, 552–563 (2012).


    Google Scholar
     

  • 126.

    Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).


    Google Scholar
     

  • 127.

    Rosenzweig, C., Solecki, W., Hammer, S. A. & Mehrotra, S. Cities lead the way in climate-change action. Nature 467, 909–911 (2010).


    Google Scholar
     

  • 128.

    Shan, Y. et al. City-level climate change mitigation in China. Sci. Adv. 4, eaaq0390 (2018).


    Google Scholar
     

  • 129.

    Wang, R., Zheng, X., Wang, H. & Shan, Y. Emission drivers of cities at different industrialization phases in China. J. Env. Manage. 250, 109494 (2019).


    Google Scholar
     

  • 130.

    Jia, J., Gong, Z., Xie, D., Chen, J. & Chen, C. Analysis of drivers and policy implications of carbon dioxide emissions of industrial energy consumption in an underdeveloped city: the case of Nanchang, China. J. Clean. Prod. 183, 843–857 (2018).


    Google Scholar
     

  • 131.

    Li, B., Liu, X. & Li, Z. Using the STIRPAT model to explore the factors driving regional CO2 emissions: a case of Tianjin, China. Nat. Hazards 76, 1667–1685 (2015).


    Google Scholar
     

  • 132.

    Miao, L. Examining the impact factors of urban residential energy consumption and CO2 emissions in China — evidence from city-level data. Ecol. Indic. 73, 29–37 (2017).


    Google Scholar
     

  • 133.

    Jing, Q., Bai, H., Luo, W., Cai, B. & Xu, H. A top-bottom method for city-scale energy-related CO2 emissions estimation: a case study of 41 Chinese cities. J. Clean. Prod. 202, 444–455 (2018).


    Google Scholar
     

  • 134.

    Cai, B., Guo, H., Cao, L., Guan, D. & Bai, H. Local strategies for China’s carbon mitigation: an investigation of Chinese city-level CO2 emissions. J. Clean. Prod. 178, 890–902 (2018).


    Google Scholar
     

  • 135.

    Cai, B. et al. China city-level greenhouse gas emissions inventory in 2015 and uncertainty analysis. Appl. Energy 253, 113579 (2019).


    Google Scholar
     

  • 136.

    Shan, Y. et al. Methodology and applications of city level CO2 emission accounts in China. J. Clean. Prod. 161, 1215–1225 (2017).


    Google Scholar
     

  • 137.

    Shan, Y., Liu, J., Liu, Z., Shao, S. & Guan, D. An emissions–socioeconomic inventory of Chinese cities. Sci. Data 6, 190027 (2019).


    Google Scholar
     

  • 138.

    Liu, Z. & Cai, B. High-resolution Carbon Emissions Data for Chinese Cities (Environment and Natural Resources Program, Belfer Center, 2018); https://www.belfercenter.org/publication/high-resolution-carbon-emissions-datachinese-cities.

  • 139.

    Su, Y. et al. China’s 19-year city-level carbon emissions of energy consumptions, driving forces and regionalized mitigation guidelines. Renew. Sustain. Energy Rev. 35, 231–243 (2014).


    Google Scholar
     

  • 140.

    Zheng, J. et al. Regional development and carbon emissions in China. Energy Econ. 81, 25–36 (2019).


    Google Scholar
     

  • 141.

    Wang, S. & Liu, X. China’s city-level energy-related CO2 emissions: spatiotemporal patterns and driving forces. Appl. Energy 200, 204–214 (2017).


    Google Scholar
     

  • 142.

    Zheng, B. et al. Observing carbon dioxide emissions over China’s cities and industrial areas with the Orbiting Carbon Observatory-2. Atmos. Chem. Phys. 20, 8501–8510 (2020).


    Google Scholar
     

  • 143.

    Chen, G. et al. Review on city-level carbon accounting. Env. Sci. Technol. 53, 5545–5558 (2019).


    Google Scholar
     

  • 144.

    Mi, Z. et al. Consumption-based emission accounting for Chinese cities. Appl. Energy 184, 1073–1081 (2016).


    Google Scholar
     

  • 145.

    He, J.-K. An analysis of China’s CO2 emission peaking target and pathways. Adv. Clim. Change Res. 5, 155–161 (2014).


    Google Scholar
     

  • 146.

    Document for Implementation of Low-carbon Development in Cities and Provinces [in Chinese] (NDRC, 2010); https://www.ndrc.gov.cn/xxgk/zcfb/tz/201008/t20100810_964674.html.

  • 147.

    Government of China. The People’s Republic of China Second Biennial Update Report on Climate Change (UNFCCC, 2018); https://unfccc.int/documents/197666.

  • 148.

    Qi, Y. T. L., Song, Q., Wang, Y. & Lv, J. Low-carbon city pilot: leading the carbon emissions peak in the 14th five-year plan period. [in Chinese] Environ. Prot. 48, 9–11, (2020).


    Google Scholar
     

  • 149.

    Liu, W. & Qin, B. Low-carbon city initiatives in China: a review from the policy paradigm perspective. Cities 51, 131–138 (2016).


    Google Scholar
     

  • 150.

    Mao, Q., Ma, B., Wang, H. & Bian, Q. Investigating policy instrument adoption in low-carbon city development: a case study from China. Energies 12, 3475 (2019).


    Google Scholar
     

  • 151.

    Hunter, G. W., Sagoe, G., Vettorato, D. & Jiayu, D. Sustainability of low carbon city initiatives in China: a comprehensive literature review. Sustainability 11, 4342 (2019).


    Google Scholar
     

  • 152.

    Cai, B. et al. How scholars and the public perceive a “low carbon city” in China. J. Clean. Prod. 149, 502–510 (2017).


    Google Scholar
     

  • 153.

    Zhao, Z.-Y., Gao, L. & Zuo, J. How national policies facilitate low carbon city development: a China study. J. Clean. Prod. 234, 743–754 (2019).


    Google Scholar
     

  • 154.

    China’s Policies and Actions for Addressing Climate Change 2018 (Ministry of Ecology and Environment of People’s Republic of China, 2018); http://english.mee.gov.cn/News_service/news_release/201812/P020181203536441502157.pdf.

  • 155.

    Khanna, N., Fridley, D. & Hong, L. China’s pilot low-carbon city initiative: a comparative assessment of national goals and local plans. Sustain. Cities Soc. 12, 110–121 (2014).


    Google Scholar
     

  • 156.

    Li, H., Wang, J., Yang, X., Wang, Y. & Wu, T. A holistic overview of the progress of China’s low-carbon city pilots. Sustain. Cities Soc. 42, 289–300 (2018).


    Google Scholar
     

  • 157.

    Yang, X., Wang, X.-C. & Zhou, Z.-Y. Development path of Chinese low-carbon cities based on index evaluation. Adv. Clim. Change Res. 9, 144–153 (2018).


    Google Scholar
     

  • 158.

    Shi, L., Xiang, X., Zhu, W. & Gao, L. Standardization of the evaluation index system for low-carbon cities in China: a case study of Xiamen. Sustainability 10, 3751 (2018).


    Google Scholar
     

  • 159.

    Jiang, H. et al. Study on peak CO2 emissions of typical large cities in China. Clim. Change Res. 17, 131-139 (2021).

  • 160.

    Responding to Climate Change: China’s Policies and Actions (The State Council Information Office of the People’s Republic of China, 2021); http://www.scio.gov.cn/zfbps/32832/Document/1715506/1715506.htm.

  • 161.

    Guan, D., Shan, Y., Liu, Z. & He, K. Performance assessment and outlook of China’s emission-trading scheme. Engineering 2, 398–401 (2016).


    Google Scholar
     

  • 162.

    China’s Emissions Trading Scheme (IEA, 2020); https://www.iea.org/reports/chinas-emissions-trading-scheme.

  • 163.

    Chen Bo, W. Y. E3G Report — China’s Low Carbon Finance and Investment Pathway (E3G, 2014); http://www.e3g.org/news/media-room/chinas-green-credit-policy-agenda-provides-the-basis-for-financing-a-low-ca.

  • 164.

    The Regular Press Conference of the Ministry of Ecology and Environment in October [in Chinese] (Ministry of Ecology and Environment of the People’s Republic of China, 2020); http://www.mee.gov.cn/xxgk2018/xxgk/xxgk15/202010/t20201028_805298.html.

  • 165.

    West, J. J. et al. Co-benefits of global greenhouse gas mitigation for future air quality and human health. Nat. Clim. Chang. 3, 885–889 (2013).


    Google Scholar
     

  • 166.

    Rao, S. et al. A multi-model assessment of the co-benefits of climate mitigation for global air quality. Environ. Res. Lett. 11, 124013 (2016).


    Google Scholar
     

  • 167.

    Xie, Y. et al. Co-benefits of climate mitigation on air quality and human health in Asian countries. Env. Int. 119, 309–318 (2018).


    Google Scholar
     

  • 168.

    Qian, H. et al. Air pollution reduction and climate co-benefits in China’s industries. Nat. Sustain. 4, 417–425 (2021).


    Google Scholar
     

  • 169.

    Li, M., Zhang, D., Li, C.-T., Selin, N. E. & Karplus, V. J. Co-benefits of China’s climate policy for air quality and human health in China and transboundary regions in 2030. Environ. Res. Lett. 14, 084006 (2019).


    Google Scholar
     

  • 170.

    Outline of the National 10th Five-year Plan [in Chinese] (The State Council of the People’s Republic of China, 2021); http://www.gov.cn/gongbao/content/2001/content_60699.htm.

  • 171.

    Outline of the National 11th Five-year Plan [in Chinese] (The State Council of the People’s Republic of China, 2006); http://www.gov.cn/gongbao/content/2006/content_268766.htm.

  • 172.

    Outline of the National 12th Five-year Plan [in Chinese] (The State Council of the People’s Republic of China, 2011); http://www.gov.cn/2011lh/content_1825838.htm.

  • 173.

    China’s National Climate Change Programme [in Chinese] (National Development and Reform Commission (NDRC) of the People’s Republic of China, 2007); https://www.ndrc.gov.cn/xwdt/xwfb/200706/t20070604_957690.html.

  • 174.

    Government of China. The People’s Republic of China Third National Communication on Climate Change (UNFCCC, 2018); https://unfccc.int/documents/197660.

  • 175.

    General Office of the State Council. Decision of Targets for Controlling Greenhouse Gas Emission by the Standing Committee of the State Council. [in Chinese] (The Central People’s Government of the People’s Republic of China, 2009); http://www.gov.cn/ldhd/2009-11/26/content_1474016.htm.

  • 176.

    Economic Daily. The Forest Cover Reached 23.04% Achieving the 13th FYP Target. [in Chinese] (The State Council of the People’s Republic of China, 2021); http://www.gov.cn/xinwen/2020-12/18/content_5570486.htm.

  • 177.

    Enhanced Actions on Climate Change: China’s Intended Nationally Determined Contributions [in Chinese] (The State Council of the People’s Republic of China, 2015); http://www.gov.cn/xinwen/2015-06/30/content_2887330.htm.

  • 178.

    The State Council of the People’s Republic of China. Outline of the National 13th Five-year Plan. [in Chinese] (Government of China, 2016); http://www.gov.cn/xinwen/2016-03/17/content_5054992.htm.

  • 179.

    ‘Enhance Solidarity’ to Fight COVID-19, Chinese President Urges, also Pledges Carbon Neutrality by 2060 (UN, 2020); https://news.un.org/en/story/2020/09/1073052.

  • 180.

    Government of China. China’s Achievements, New Goals and New Measures for Nationally Determined Contributions (UNFCCC, 2021); https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/China%20First/China%E2%80%99s%20Achievements,%20New%20Goals%20and%20New%20Measures%20for%20Nationally%20Determined%20Contributions.pdf.

  • 181.

    Country Emissions (GCA, 2020); http://www.globalcarbonatlas.org/en/CO2-emissions.

  • 182.

    Gilfillan, D. & Marland, G. CDIAC-FF: global and national CO2 emissions from fossil fuel combustion and cement manufacture: 1751–2017. Earth Syst. Sci. Data 13, 1667–1680 (2021).


    Google Scholar
     

  • 183.

    Government of China. The People’s Republic of China Initial National Communication on Climate Change (UNFCCC, 2004); https://unfccc.int/documents/71494.

  • 184.

    Government of China. Second National Communication on Climate Change of The People’s Republic of China (UNFCCC, 2012); https://unfccc.int/documents/71515.

  • 185.

    Government of China. The People’s Republic of China First Biennial Update Report on Climate Change (UNFCCC, 2016); https://unfccc.int/documents/180618.

  • 186.

    Crude Steel Production (World Steel Association, 2021); https://www.worldsteel.org/steel-by-topic/statistics/steel-data-viewer.html.

  • 187.

    Andrew, R.M., 2018. Global CO2 emissions from cement production. Earth Syst. Sci. Data 195–217 (2018).

  • 188.

    Zhou, X. (eds) China Electric Power Yearbook 2002 (Chinese Edition) (Beijing: China Electric Power Press, 2002).

  • 189.

    Andres, R. J. et al. A synthesis of carbon dioxide emissions from fossil-fuel combustion. Biogeosciences 9, 1845–1871 (2012).


    Google Scholar
     

  • 190.

    Gregg, J. S., Andres, R. J. & Marland, G. China: emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production. Geophys. Res. Lett. 35, L08806 (2008).


    Google Scholar
     

  • 191.

    Andres, R. J., Boden, T. A. & Higdon, D. A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon dioxide emission. Tellus B 66, 23616 (2014).

  • 192.

    Olivier, J. G., Janssens-Maenhout, G. & Peters, J. A. Trends in global CO2 emissions: 2012 report (PBL Netherlands Environmental Assessment Agency, 2012).

  • 193.

    Le Quéré, C. et al. Global carbon budget 2014. Earth Syst. Sci. Data Discuss. 7, 521–610 (2014).


    Google Scholar
     

  • 194.

    Research Team of China Climate Change Country Study. China Climate Change Country Study (Beijing:Tsinghua Univ. Press, 1999).

  • 195.

    Boden, T. A., Marland, G. & Andres, R. J. Global, regional, and national fossil-fuel CO2 emissions (Oak Ridge National Laboratory, US Department of Energy, 2013).

  • 196.

    Fridley, D., Levine, M., Lu, H. & Fino-Chen, C. Key China Energy Statistics 2014 (Lawrence Berkeley National Laboratory, 2014).

  • 197.

    Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 1997).

  • 198.

    2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2006).

  • 199.

    National Bureau of Statistics of China. Chinese Energy Statistics Yearbook 2013 (China Statistics Press, 2013).

  • 200.

    Sinton, J. E. & Fridley, D. G. A guide to China’s energy statistics. J. Energy Lit. 8, 22–35 (2002).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *