Adverse health and environmental outcomes of cycling in heavily polluted urban environments


  • 1.

    Tran, P. T. M. et al. Cyclists’ personal exposure to traffic-related air pollution and its influence on bikeability. Transp. Res. Part D 88, 102563 (2020).


    Google Scholar
     

  • 2.

    Elavsky, S. et al. Physical activity in an air-polluted environment: behavioral, psychological and neuroimaging protocol for a prospective cohort study (Healthy Aging in Industrial Environment study—Program 4). BMC Public Health 21, 126 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Giles, L. V. & Koehle, M. S. The Health Effects of Exercising in Air Pollution. Sports Med 44, 223–249 (2014).

    PubMed 

    Google Scholar
     

  • 4.

    Pasqua, L. A. et al. Exercising in air pollution: The cleanest versus dirtiest cities challenge. Int. J. Environ. Res. Public Health 15(7), 1502 (2018).

    PubMed Central 

    Google Scholar
     

  • 5.

    Slezakova, K., Pereira, M. C. & Morais, S. Ultrafine particles: Levels in ambient air during outdoor sport activities. Environ. Pollut. 258, 113648 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    De Hartog, J. J., Boogaard, H., Nijland, H. & Hoek, G. Do the health benefits of cycling outweigh the risks?. Environ Health Perspect 118, 1109–1116 (2010).

    PubMed Central 

    Google Scholar
     

  • 7.

    Apparicio, P., Gelb, J., Jarry, V. & Lesage-Mann, É. Cycling in one of the most polluted cities in the world: Exposure to noise and air pollution and potential adverse health impacts in Delhi. Int. J. Health Geogr. 20(18), 1–16 (2021).


    Google Scholar
     

  • 8.

    IQair Report, 2021 https://www.iqair.com/world-most-polluted-cities (accessed 29 Jul 2021).

  • 9.

    Richardson, E. A., Pearce, J., Tunstall, H., Mitchell, R. & Shortt, N. K. Particulate air pollution and health inequalities: A Europe-wide ecological analysis. Int. J. Health Geogr. 12, 34 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Kumar, P., Pirjola, L., Ketzel, M. & Harrison, R. M. Nanoparticle emissions from 11 nonvehicle exhaust sources: A review. Atmos. Environ. 67, 252–277 (2013).

    CAS 
    ADS 

    Google Scholar
     

  • 11.

    Alemani, M., Nosko, O., Metinoz, I. & Olofsson, U. A study of emission of airborne wear particles from car brake friction pairs. SAE Int. J. Mater. Manf. 9(1), 147–157 (2016).


    Google Scholar
     

  • 12.

    Nosko, O., Vanhanen, J. & Olofsson, U. Emission of 1.3–10 nm airborne particles from brake materials. Aerosol Sci. Technol. 51(1), 91–96 (2017).

    CAS 
    ADS 

    Google Scholar
     

  • 13.

    Adamiec, E. & Jarosz-Krzemińska, E. Human health risk assessment associated with contaminants in the finest fraction of sidewalk dust collected in proximity to trafficked roads. Sci. Rep. 9, 16364 (2019).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 14.

    Font, O. et al. Origin and speciation of major and trace PM elements in the Barcelona subway system. Transp. Res. Part D 72(1506–1516), 17–35 (2019).


    Google Scholar
     

  • 15.

    Gonet, T. & Maher, B. A. Airborne, vehicle-derived fe-bearing nanoparticles in the urban environment: A review. Environ. Sci. Technol. 53, 9970–9991 (2019).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 16.

    Ma, J. et al. A comparison of airborne particles generated from disk brake contacts: Induction versus frictional heating. Tribol. Lett. 68, 38 (2020).


    Google Scholar
     

  • 17.

    Grigoratos, T. & Martini, G. Brake wear particle emissions: a review. Environ. Sci. Pollut. Res. 22, 2491–2504 (2015).

    CAS 

    Google Scholar
     

  • 18.

    Adamiec, E., Jarosz-Krzemińska, E. & Wieszała, R. Heavy metals from nonexhaust vehicle emissions in urban and motorway road dusts. Environ. Monit. Assess. 188(369), 1–11 (2016).

    CAS 

    Google Scholar
     

  • 19.

    Werkenthin, M., Kluge, B. & Wessolek, G. Metals in European roadside soils and soil solution: A review. Environ. Pollut. J. 189, 98–110 (2014).

    CAS 

    Google Scholar
     

  • 20.

    Kupiainen, K. J. et al. Size and composition of airborne particles from pavement wear, tyres, and tractionsanding. Environ. Sci. Technol. 39(3), 699–706 (2005).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 21.

    Harrison, R. M., Jones, A. M., Gietl, J., Yin, J. & Green, D. C. Estimation of the contributions of brake dust, tyre wear, and resuspension to nonexhaust traffic particles derived from atmospheric measurements. Environ. Sci. Technol. 46(12), 6523–6529 (2012).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 22.

    Amato, F. et al. Urban air quality: The challenge of traffic nonexhaust emissions. J. Hazard. Mater. 275, 31–36 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Amato, F. et al. Trends of road dust emissions contributions on ambient PM levels at rural, urban and industrial sites in Southern Spain. Atmos. Chem. Phys. 13, 31933–31963 (2013).


    Google Scholar
     

  • 24.

    Lawrence, S. et al. Source apportionment of traffic emissions of particulate matter using tunnel measurements. Atmos. Environ. 77, 548–557 (2013).

    CAS 
    ADS 

    Google Scholar
     

  • 25.

    Budai, P. & Clement, A. Spatial distribution patterns of four traffic-emitted heavy metals in urban road dust and the resuspension of brake-emitted particles: Findings of a field study. Transp. Res. Part D 62, 179–185 (2018).


    Google Scholar
     

  • 26.

    Zhou, Q. et al. Residents health risk of Pb, Cd and Cu exposure to street dust based on different particle sizes around zinc smelting plant Northeast of China. Environ. Geochem. Health. 37, 207–220 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Trojanowska, M. & Świetlik, R. Ocena narażenia mieszkańców miast na metale ciężkie obecne w pyłach ulicznych. Autobusy 12, 474–478 (2016) ((in Polish)).


    Google Scholar
     

  • 28.

    McBride, M. B. Environmental issue toxic metal accumulation from agricultural use of sludge: Are USEPA regulations protective?. J. Environ. Qual. 24, 5 (1995).

    CAS 

    Google Scholar
     

  • 29.

    Ajala, A. O., Farinde, A. J. & Ogunjimi, S. I. Assessment of community factors influencing the effectiveness of improved cassava production technologies in Osun State, Nigeria. Int. J. Appl. Agric. Apicult. Res. 10, 145–153 (2014).


    Google Scholar
     

  • 30.

    Adewuyi, G. O. & Osobamiro, T. Chemical speciation and potential mobility of some toxic metals in tropical agricultural soil. Res. J. Environ. Toxicol. 10(3), 159–165 (2016).

    CAS 

    Google Scholar
     

  • 31.

    Schleicher, N. J. et al. Temporal variability of trace metal mobility of urban particulate matter from Beijing: A contribution to health impact assessments of aerosols. Atmos. Environ. 45, 7248–7265 (2011).

    CAS 
    ADS 

    Google Scholar
     

  • 32.

    Shams, M. et al. Heavy metals exposure, carcinogenic and non-carcinogenic human health risks assessment of groundwater around mines in Joghatai, Iran. Int. J. Environ. Anal. Chem. 7, 1–16 (2020).


    Google Scholar
     

  • 33.

    Sadeghi, H., Fazlzadeh, M., Zarei, A., Mahvi, A. H. & Nazmara, S. Spatial distribution and contamination of heavy metals in surface water, groundwater and topsoil surrounding Moghan’s tannery site in Ardabil, Iran. Int. J. Environ. Anal. Chem. 9, 1–11 (2020).


    Google Scholar
     

  • 34.

    Ahmad, W. et al. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Sci. Rep. 11, 17006 (2021).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 35.

    Narwal, R. P. & Singh, B. R. Effect of organic materials on partitioning, extractability and plant uptake of metals in an alum shale soil. Water Air Soil Pollut. 103, 405–421 (1998).

    CAS 
    ADS 

    Google Scholar
     

  • 36.

    Oyekunle, J. A. O., Adekunle, A. S., Ogunfowokan, A. O., Olutona, G. O. & Omolere, O. B. Bromate and trace metal levels in bread loaves from outlets within Ile-Ife Metropolis, Southwestern Nigeria. Toxicol. Rep. 1, 224–230 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Gope, M., Masto, R. E., George, J., Hoque, R. R. & Balachandran, S. Contamination and risk assessment of Cr in road dust of Asansol: A medium sized city. Int. J. Bio-Resour. Environ. Agric. Sci. 2(2), 269–280 (2016).


    Google Scholar
     

  • 38.

    Gope, M., Masto, R. E., George, J., Hoque, R. R. & Balachandran, S. Bioavailability and health risk of some potentially toxic elements (Cd, Cu, Pb and Zn) in street dust of Asansol, India. Ecotoxicol. Environ. Saf. 138, 231–241 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Verla, E. N., Verla, E. W., Osisi, A. F., Okeke, P. M. & Enyoh, C. E. Finding a relationship between mobility factors of selected heavy metals and soil particle size in soils from children’s playgrounds. Environ. Monit. Assess. 191, 742 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Adamiec, E. Road environments: Impact of metals on human health in heavily congested cities of Poland. Int. J. Environ. Res. Public Health 14(697), 1–17 (2017).


    Google Scholar
     

  • 41.

    U.S. Environmental Protection Agency. Method 3050B: Acid Digestion of Sediments, Sludges, and Soils, Revision 1 (EPA, 1996).


    Google Scholar
     

  • 42.

    Environmental Protection Agency. Method 6020B: Inductively Coupled Plasma-Mass Spectrometry, Revision 2 (EPA, 1998).


    Google Scholar
     

  • 43.

    Turekian, K. K. & Wedephol, H. H. Distribution of the elements in some major units of the earth’s crust. Geol. Soc. Am. Bull. 72, 175–192 (1961).

    CAS 
    ADS 

    Google Scholar
     

  • 44.

    Müller, G. Index of geoaccumulation in sediments of the Rhine River. Geol. J. 2, 109–118 (1969).


    Google Scholar
     

  • 45.

    Salomons, W. & Förstner, U. Metals in the Hydrocycle (Springer Verlag, 1985).


    Google Scholar
     

  • 46.

    Ugwu, K. E. & Ofomatah, A. C. Concentration and risk assessment of toxic metals in indoor dust in selected schools in Southeast, Nigeria. SN Appl. Sci. 3, 43 (2021).

    CAS 

    Google Scholar
     

  • 47.

    U.S. Environmental Protection Agency. Exposure Factors Handbook 2011 Edition (Final). EPA/600/R-09/052F. https://www.nrc.gov/docs/ML1400/ML14007A666.pdf. (accessed 27 July 2021)

  • 48.

    Tan, S. Y., Praveena, S. M., Abidin, E. Z. & Cheema, M. S. A review of heavy metals in indoor dust and its human health-risk implications. Rev. Environ. Health. 31(4), 447–456 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Regional Screening Levels (RSLs)—Generic Tables 2021. U.S. Environmental Protection Agency. https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables (accessed 19 Aug 2021).

  • 50.

    Yunesian, M., Rostami, R., Zarei, A., Fazlzadeh, M. & Janjani, H. Exposure to high levels of PM2.5 and PM10 in the metropolis of Tehran and the associated health risks during 2016–2017. Microchem. J. 150, 104174 (2019).

    CAS 

    Google Scholar
     

  • 51.

    Rostami, R. et al. Exposure and risk assessment of PAHs in indoor air of waterpipe cafés in Ardebil. Iran. Build. Environ. 155, 47–77 (2019).


    Google Scholar
     

  • 52.

    U.S. Environmental Protection Agency. Risk Assessment Guidance for Superfund. Vol. 1: Human Health Evaluation Manual. Part A. Interim final (Office of Emergency and Remedial Response, US EPS, 1989).


    Google Scholar
     

  • 53.

    Bigazzi, A. Y. Determination of active travel speed for minimum air pollution inhalation. Int. J. Sustain. Transp. 11(3), 221–229 (2017).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *